122 research outputs found

    Active Tension Network model suggests an exotic mechanical state realized in epithelial tissues.

    Get PDF
    Mechanical interactions play a crucial role in epithelial morphogenesis, yet understanding the complex mechanisms through which stress and deformation affect cell behavior remains an open problem. Here we formulate and analyze the Active Tension Network (ATN) model, which assumes that the mechanical balance of cells within a tissue is dominated by cortical tension and introduces tension-dependent active remodeling of the cortex. We find that ATNs exhibit unusual mechanical properties. Specifically, an ATN behaves as a fluid at short times, but at long times supports external tension like a solid. Furthermore, an ATN has an extensively degenerate equilibrium mechanical state associated with a discrete conformal - "isogonal" - deformation of cells. The ATN model predicts a constraint on equilibrium cell geometries, which we demonstrate to approximately hold in certain epithelial tissues. We further show that isogonal modes are observed in the fruit y embryo, accounting for the striking variability of apical areas of ventral cells and helping understand the early phase of gastrulation. Living matter realizes new and exotic mechanical states, the study of which helps to understand biological phenomena

    Sharp boundaries of Dpp signalling trigger local cell death required for Drosophila leg morphogenesis

    Get PDF
    Article available at http://dx.doi.org/10.1038/ncb1518Morphogens are secreted signalling molecules that govern many developmental processes1. In the Drosophila wing disc, the transforming growth factor (TGF) homologue Decapentaplegic (Dpp) forms a smooth gradient and specifies cell fate by conferring a defined value of morphogen activity. Thus, neighbouring cells have similar amounts of Dpp protein, and if a sharp discontinuity in Dpp activity is generated between these cells, Jun kinase (JNK)-dependent apoptosis is triggered to restore graded positional information2, 3. To date, it has been assumed that this apoptotic process is only activated when normal signalling is distorted. However, we now show that a similar process occurs during normal development: rupture in Dpp activity occurs during normal segmentation of the distal legs of Drosophila. This sharp boundary of Dpp signalling, independently of the absolute level of Dpp activity, induces a JNKβ€”reaper-dependent apoptosis required for the morphogenesis of a particular structure of the leg, the joint. Our results show that Dpp could induce a developmental programme not only in a concentration dependent manner, but also by the creation of a sharp boundary of Dpp activity. Furthermore, the same process could be used either to restore a normal pattern in response to artificial disturbance or to direct a morphogenetic process.This work has been supported by grants from the DirecciΓ³n General de InvestigaciΓ³n CientΓ­fica y TΓ©cnica (BMC 2002-00300), the Comunidad AutΓ³noma de Madrid (08.1/0031/2001.1 and GR/SAL/0147/2004) and an Institutional Grant from the FundaciΓ³n RamΓ³n Areces. C.M. is a recipient of a FormaciΓ³n del Personal Universitario (F.P.U.) fellowship from the Ministerio de EducaciΓ³n y Ciencia.Peer reviewe

    Decreased Cerebrovascular Brain-Derived Neurotrophic Factor–Mediated Neuroprotection in the Diabetic Brain

    Get PDF
    Objective: Diabetes is an independent risk factor for stroke. However, the underlying mechanism of how diabetes confers that this risk is not fully understood. We hypothesize that secretion of neurotrophic factors by the cerebral endothelium, such as brain-derived neurotrophic factor (BDNF), is suppressed in diabetes. Consequently, such accrued neuroprotective deficits make neurons more vulnerable to injury. Research Design and Methods: We examined BDNF protein levels in a streptozotocin-induced rat model of diabetes by Western blotting and immunohistochemistry. Levels of total and secreted BDNF protein were quantified in human brain microvascular endothelial cells after exposure to advanced glycation end product (AGE)-BSA by enzyme-linked immunosorbent assay and immunocytochemistry. In media transfer experiments, the neuroprotective efficacy of conditioned media from normal healthy endothelial cells was compared with AGE-treated endothelial cells in an in vitro hypoxic injury model. Results: Cerebrovascular BDNF protein was reduced in the cortical endothelium in 6-month diabetic rats. Immunohistochemical analysis of 6-week diabetic brain sections showed that the reduction of BDNF occurs early after induction of diabetes. Treatment of brain microvascular endothelial cells with AGE caused a similar reduction in BDNF protein and secretion in an extracellular signal–related kinase-dependent manner. In media transfer experiments, conditioned media from AGE-treated endothelial cells were less neuroprotective against hypoxic injury because of a decrease in secreted BDNF. Conclusions: Taken together, our findings suggest that a progressive depletion of microvascular neuroprotection in diabetes elevates the risk of neuronal injury for a variety of central nervous system diseases, including stroke and neurodegeneration

    Central nervous system rather than immune cell-derived BDNF mediates axonal protective effects early in autoimmune demyelination

    Get PDF
    Brain-derived neurotrophic factor (BDNF) is involved in neuronal and glial development and survival. While neurons and astrocytes are its main cellular source in the central nervous system (CNS), bioactive BDNF is also expressed in immune cells and in lesions of multiple sclerosis and its animal model experimental autoimmune encephalomyelitis (EAE). Previous data revealed that BDNF exerts neuroprotective effects in myelin oligodendrocyte glycoprotein-induced EAE. Using a conditional knock-out model with inducible deletion of BDNF, we here show that clinical symptoms and structural damage are increased when BDNF is absent during the initiation phase of clinical EAE. In contrast, deletion of BDNF later in the disease course of EAE did not result in significant changes, either in the disease course or in axonal integrity. Bone marrow chimeras revealed that the deletion of BDNF in the CNS alone, with no deletion of BDNF in the infiltrating immune cells, was sufficient for the observed effects. Finally, the therapeutic effect of glatiramer acetate, a well-characterized disease-modifying drug with the potential to modulate BDNF expression, was partially reversed in mice in which BDNF was deleted shortly before the onset of disease. In summary, our data argue for an early window of therapeutic opportunity where modulation of BDNF may exert neuroprotective effects in experimental autoimmune demyelination

    Insights into Hox Protein Function from a Large Scale Combinatorial Analysis of Protein Domains

    Get PDF
    Protein function is encoded within protein sequence and protein domains. However, how protein domains cooperate within a protein to modulate overall activity and how this impacts functional diversification at the molecular and organism levels remains largely unaddressed. Focusing on three domains of the central class Drosophila Hox transcription factor AbdominalA (AbdA), we used combinatorial domain mutations and most known AbdA developmental functions as biological readouts to investigate how protein domains collectively shape protein activity. The results uncover redundancy, interactivity, and multifunctionality of protein domains as salient features underlying overall AbdA protein activity, providing means to apprehend functional diversity and accounting for the robustness of Hox-controlled developmental programs. Importantly, the results highlight context-dependency in protein domain usage and interaction, allowing major modifications in domains to be tolerated without general functional loss. The non-pleoitropic effect of domain mutation suggests that protein modification may contribute more broadly to molecular changes underlying morphological diversification during evolution, so far thought to rely largely on modification in gene cis-regulatory sequences

    Insertional mutagenesis screening identifies the zinc finger homeodomain 2 (zfh2) gene as a novel factor required for embryonic leg development in Tribolium castaneum

    Get PDF
    The genetic control of leg development is well characterized in the fly Drosophila melanogaster. These control mechanisms, however, must differ to some degree between different insect species to account for the morphological diversity of thoracic legs in the insects. The legs of the flour beetle Tribolium castaneum differ from the Drosophila legs in their developmental mode as well as in their specific morphology especially at the larval stage. In order to identify genes involved in the morphogenesis of the Tribolium larval legs, we have analyzed EGFP enhancer trap lines of Tribolium. We have identified the zfh2 gene as a novel factor required for normal leg development in Tribolium. RNA interference with zfh2 function leads to two alternative classes of leg phenotype. The loss of a leg segment boundary and the generation of ectopic outgrowths in one class of phenotype suggest a role in leg segmentation and segment growth. The malformation of the pretarsal claw in the second class of phenotype suggests a role in distal development and the morphogenesis of the claw-shaped morphology of the pretarsus. This suggests that zfh2 is involved in the regulation of an unidentified target gene in a concentration-dependent manner. Our results demonstrate that enhancer trap screens in T. castaneum have the potential to identify novel gene functions regulating specific developmental processes

    Separable functions of wingless in distal and ventral patterning of the Tribolium leg

    Get PDF
    The gene wingless (wg) in Drosophila is an important factor in leg development. During embryonic development wg is involved in the allocation of the limb primordia. During imaginal disk development wg is involved in distal development and it has a separate role in ventral development. The expression pattern of wg is highly conserved in all arthropods (comprising data from insects, myriapods, crustaceans, and chelicerates), suggesting that its function in leg development is also conserved. However, recent work in other insects (e.g. the milkweed bug Oncopeltus fasciatus) argued against a role of wg in leg development. We have studied the role of wg in leg development of the flour beetle Tribolium castaneum. Using stage-specific staggered embryonic RNAi in wild-type and transgenic EGFP expressing enhancer trap lines we are able to demonstrate separable functions of Tribolium wg in distal and in ventral leg development. The distal role affects all podomeres distal to the coxa, whereas the ventral role is restricted to cells along the ventral midline of the legs. In addition, severe leg defects after injection into early embryonic stages are evidence that wg is also involved in proximal development and limb allocation in Tribolium. Our data suggest that the roles of wg in leg development are highly conserved in the holometabolous insects. Further studies will reveal the degree of conservation in other arthropod groups

    Neural and Synaptic Defects in slytherin, a Zebrafish Model for Human Congenital Disorders of Glycosylation

    Get PDF
    Congenital disorder of glycosylation type IIc (CDG IIc) is characterized by mental retardation, slowed growth and severe immunodeficiency, attributed to the lack of fucosylated glycoproteins. While impaired Notch signaling has been implicated in some aspects of CDG IIc pathogenesis, the molecular and cellular mechanisms remain poorly understood. We have identified a zebrafish mutant slytherin (srn), which harbors a missense point mutation in GDP-mannose 4,6 dehydratase (GMDS), the rate-limiting enzyme in protein fucosylation, including that of Notch. Here we report that some of the mechanisms underlying the neural phenotypes in srn and in CGD IIc are Notch-dependent, while others are Notch-independent. We show, for the first time in a vertebrate in vivo, that defects in protein fucosylation leads to defects in neuronal differentiation, maintenance, axon branching, and synapse formation. Srn is thus a useful and important vertebrate model for human CDG IIc that has provided new insights into the neural phenotypes that are hallmarks of the human disorder and has also highlighted the role of protein fucosylation in neural development

    Neuronal Profilin Isoforms Are Addressed by Different Signalling Pathways

    Get PDF
    Profilins are prominent regulators of actin dynamics. While most mammalian cells express only one profilin, two isoforms, PFN1 and PFN2a are present in the CNS. To challenge the hypothesis that the expression of two profilin isoforms is linked to the complex shape of neurons and to the activity-dependent structural plasticity, we analysed how PFN1 and PFN2a respond to changes of neuronal activity. Simultaneous labelling of rodent embryonic neurons with isoform-specific monoclonal antibodies revealed both isoforms in the same synapse. Immunoelectron microscopy on brain sections demonstrated both profilins in synapses of the mature rodent cortex, hippocampus and cerebellum. Both isoforms were significantly more abundant in postsynaptic than in presynaptic structures. Immunofluorescence showed PFN2a associated with gephyrin clusters of the postsynaptic active zone in inhibitory synapses of embryonic neurons. When cultures were stimulated in order to change their activity level, active synapses that were identified by the uptake of synaptotagmin antibodies, displayed significantly higher amounts of both isoforms than non-stimulated controls. Specific inhibition of NMDA receptors by the antagonist APV in cultured rat hippocampal neurons resulted in a decrease of PFN2a but left PFN1 unaffected. Stimulation by the brain derived neurotrophic factor (BDNF), on the other hand, led to a significant increase in both synaptic PFN1 and PFN2a. Analogous results were obtained for neuronal nuclei: both isoforms were localized in the same nucleus, and their levels rose significantly in response to KCl stimulation, whereas BDNF caused here a higher increase in PFN1 than in PFN2a. Our results strongly support the notion of an isoform specific role for profilins as regulators of actin dynamics in different signalling pathways, in excitatory as well as in inhibitory synapses. Furthermore, they suggest a functional role for both profilins in neuronal nuclei
    • …
    corecore