50 research outputs found

    Polyunsaturated fatty acids in fishes increase with total lipids irrespective of feeding sources and trophic position

    Get PDF
    Trophic transfer and retention of dietary compounds are vital for somatic development, reproduction, and survival of aquatic consumers. In this field study, stable carbon and nitrogen isotopes, and fatty acids (FA) contents in invertebrates and fishes of pre-alpine Lake Lunz, Austria, were used to (1) identify the resource use and trophic level of Arctic charr (Salvelinus alpinus), pike (Esox lucius), perch (Perca fluviatilis), brown trout (Salmo trutta), roach (Rutilus rutilus), and minnow (Phoxinus phoxinus) and (2) examine how polyunsaturated fatty acids (PUFA; i.e., omega-3 and -6 PUFA) are related to total lipid status, littoral-pelagic reliance, and trophic position. Stable isotope data suggest that pike, perch, and minnow derived most of their energy from littoral resources, but minnows differed from pike and perch in their trophic position and PUFA composition. The co-occurrence of cyprinids, percids, and pike segregated these fishes into more lipid-rich (roach, minnow) and lipid-poor (pike, percids) species. Although the relatively lipid-poor pike and percids occupied a higher trophic position than cyprinids, there was a concurrent, total lipid-dependent decline in omega-3 and -6 PUFA in these predatory fishes. Results of this lake food-web study demonstrated that total lipids in fish community, littoral-pelagic reliance, and trophic position explained omega-3 and -6 PUFA in dorsal muscle tissues. Omega-3 and -6 PUFA in these fishes decreased with increasing trophic position, demonstrating that these essential FAs did not biomagnify with increasing trophic level. Finally, this lake food-web study provides evidence of fish community-level relationship between total lipid status and PUFA or stable isotope ratios, whereas the strength of such relationships was less strong at the species level.Peer reviewe

    Functional Effects of Parasites on Food Web Properties during the Spring Diatom Bloom in Lake Pavin: A Linear Inverse Modeling Analysis

    Get PDF
    This study is the first assessment of the quantitative impact of parasitic chytrids on a planktonic food web. We used a carbon-based food web model of Lake Pavin (Massif Central, France) to investigate the effects of chytrids during the spring diatom bloom by developing models with and without chytrids. Linear inverse modelling procedures were employed to estimate undetermined flows in the lake. The Monte Carlo Markov chain linear inverse modelling procedure provided estimates of the ranges of model-derived fluxes. Model results support recent theories on the probable impact of parasites on food web function. In the lake, during spring, when ‘inedible’ algae (unexploited by planktonic herbivores) were the dominant primary producers, the epidemic growth of chytrids significantly reduced the sedimentation loss of algal carbon to the detritus pool through the production of grazer-exploitable zoospores. We also review some theories about the potential influence of parasites on ecological network properties and argue that parasitism contributes to longer carbon path lengths, higher levels of activity and specialization, and lower recycling. Considering the “structural asymmetry” hypothesis as a stabilizing pattern, chytrids should contribute to the stability of aquatic food webs

    Effects of multiple stressors on cyanobacteria abundance vary with lake type

    Get PDF
    Blooms of cyanobacteria are a current threat to global water security that is expected to increase in the future because of increasing nutrient enrichment, increasing temperature and extreme precipitation in combination with prolonged drought. However, the responses to multiple stressors, such as those above, are often complex and there is contradictory evidence as to how they may interact. Here we used broad scale data from 494 lakes in central and northern Europe, to assess how cyanobacteria respond to nutrients (phosphorus), temperature and water retention time in different types of lakes. Eight lake types were examined based on factorial combinations of major factors that determine phytoplankton composition and sensitivity to nutrients: alkalinity (low and medium‐high), colour (clear and humic) and mixing intensity (polymictic and stratified). In line with expectations, cyanobacteria increased with temperature and retention time in five of the eight lake types. Temperature effects were greatest in lake types situated at higher latitudes, suggesting that lakes currently not at risk could be affected by warming in the future. However, the sensitivity of cyanobacteria to temperature, retention time and phosphorus varied among lake types highlighting the complex responses of lakes to multiple stressors. For example, in polymictic, medium‐high alkalinity, humic lakes cyanobacteria biovolume was positively explained by retention time and a synergy between TP and temperature while in polymictic, medium‐high alkalinity, clear lakes only retention time was identified as an explanatory variable. These results show that, although climate change will need to be accounted for when managing the risk of cyanobacteria in lakes, a ‘one‐size fits‐all’ approach is not appropriate. When forecasting the response of cyanobacteria to future environmental change, including changes caused by climate and local management, it will be important to take this differential sensitivity of lakes into account

    Towards Ambient Intelligence for the Domestic Care of the Elderly

    No full text
    In this article we present an integrated system the domestic care of elderly people which is being developed within the RoboCare project.\ud The system is composed of a network of sensors placed in the environment to reconstruct a global situation and a set of robotic and software agents for controlling the environment. Within this framework, the two main components that we describe in this article are: (1) a people and robot\ud localization and tracking system that exploits stereo vision in order to monitor the positions of robots and persons; (2) a supervision framework that is in charge of collecting information about the distributed sensors and monitoring the activities of the assisted person. This article shows how, starting from these two ingredients, we are developing a system prototype for an “intelligent” environment, which acts as a global monitor surveying an assisted elderly person and reacts to the stimuli coming from the environment in order to control its evolution
    corecore