506 research outputs found
A fast cardiac electromechanics model coupling the Eikonal and the nonlinear mechanics equations
We present a new model of human cardiac electromechanics for the left ventricle where electrophysiology is described by a Reaction-Eikonal model and which enables an off-line resolution of the reaction model, thus entailing a big saving of computational time. Subcellular dynamics is coupled with a model of tissue mechanics, which is in turn coupled with a Windkessel model for blood circulation. Our numerical results show that the proposed model is able to provide a physiological response to changes in certain variables (end-diastolic volume, total peripheral resistance, contractility). We also show that our model is able to reproduce with high accuracy and with a considerably lower computational time the results that we would obtain if the monodomain model should be used in place of the Eikonal model
Finite element and finite volume-element simulation of pseudo-ECGs and cardiac alternans
In this paper, we are interested in the spatio-temporal dynamics of the transmembrane potential in paced isotropic and anisotropic cardiac tissues. In particular, we observe a specific precursor of cardiac arrhythmias that is the presence of alternans in the action potential duration. The underlying mathematical model consists of a reactionâdiffusion system describing the propagation of the electric potential and the nonlinear interaction with ionic gating variables. Either conforming piecewise continuous finite elements or a finite volume-element scheme are employed for the spatial discretization of all fields, whereas operator splitting strategies of first and second order are used for the time integration. We also describe an efficient mechanism to compute pseudo-ECG signals, and we analyze restitution curves and alternans patterns for physiological and pathological cardiac rhythms
Dialogue based interfaces for universal access.
Conversation provides an excellent means of communication for almost all people. Consequently, a conversational interface is an excellent mechanism for allowing people to interact with systems. Conversational systems are an active research area, but a wide range of systems can be developed with current technology. More sophisticated interfaces can take considerable effort, but simple interfaces can be developed quite rapidly. This paper gives an introduction to the current state of the art of conversational systems and interfaces. It describes a methodology for developing conversational interfaces and gives an example of an interface for a state benefits web site. The paper discusses how this interface could improve access for a wide range of people, and how further development of this interface would allow a larger range of people to use the system and give them more functionality
Morphological stability of electromigration-driven vacancy islands
The electromigration-induced shape evolution of two-dimensional vacancy
islands on a crystal surface is studied using a continuum approach. We consider
the regime where mass transport is restricted to terrace diffusion in the
interior of the island. In the limit of fast attachment/detachment kinetics a
circle translating at constant velocity is a stationary solution of the
problem. In contrast to earlier work [O. Pierre-Louis and T.L. Einstein, Phys.
Rev. B 62, 13697 (2000)] we show that the circular solution remains linearly
stable for arbitrarily large driving forces. The numerical solution of the full
nonlinear problem nevertheless reveals a fingering instability at the trailing
end of the island, which develops from finite amplitude perturbations and
eventually leads to pinch-off. Relaxing the condition of instantaneous
attachment/detachment kinetics, we obtain non-circular elongated stationary
shapes in an analytic approximation which compares favorably to the full
numerical solution.Comment: 12 page
Composing JSON-based Web APIs
International audienceThe development of Web APIs has become a discipline that companies have to master to succeed in the Web. The so-called API economy is pushing companies to provide access to their data by means of Web APIs, thus requiring web developers to study and integrate such APIs into their applications. The exchange of data with these APIs is usually performed by using JSON, a schemaless data format easy for computers to parse and use. While JSON data is easy to read, its structure is implicit, thus entailing serious problems when integrating APIs coming from di erent vendors. Web developers have therefore to understand the domain behind each API and study how they can be composed. We tackle this issue by presenting an approach able to both discover the domain of JSON-based Web APIs, and identify composition links among them. Our approach allows developers to easily visualize what is behind APIs and how they can be composed to be used in their applications
On some notions of good reduction for endomorphisms of the projective line
Let be an endomorphism of \SR(\bar{\Q}), the projective line over
the algebraic closure of \Q, of degree defined over a number field
. Let be a non-archimedean valuation of . We say that has
critically good reduction at if any pair of distinct ramification points of
do not collide under reduction modulo and the same holds for any
pair of branch points. We say that has simple good reduction at if
the map , the reduction of modulo , has the same degree of
. We prove that if has critically good reduction at and the
reduction map is separable, then has simple good reduction at
.Comment: 15 page
Reduced-order semi-implicit schemes for fluid-structure interaction problems
POD-Galerkin reduced-order models (ROMs) for fluid-structure interaction problems (incompressible fluid and thin structure) are proposed in this paper. Both the high-fidelity and reduced-order methods are based on a Chorin-Temam operator-splitting approach. Two different reduced-order methods are proposed, which differ on velocity continuity condition, imposed weakly or strongly, respectively. The resulting ROMs are tested and compared on a representative haemodynamics test case characterized by wave propagation, in order to assess the capabilities of the proposed strategies
Domain decomposition for implicit solvation models
International audienceThis article is the first of a series of papers dealing with domain decomposition algorithms for implicit solvent models. We show that, in the framework of the COSMO model, with van der Waals molecular cavities and classical charge distributions, the electrostatic energy contribution to the solvation energy, usually computed by solving an integral equation on the whole surface of the molecular cavity, can be computed more efficiently by using an integral equation formulation of Schwarz's domain decomposition method for boundary value problems. In addition, the so-obtained potential energy surface is smooth, which is a critical property to perform geometry optimization and molecular dynamics simulations. The purpose of this first article is to detail the methodology, set up the theoretical foundations of the approach, and study the accuracies and convergence rates of the resulting algorithms. The full efficiency of the method and its applicability to large molecular systems of biological interest is demonstrated elsewhere
- âŠ