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Abstract

Let Φ be an endomorphism of P1
Q, the projective line over the algebraic closure

of Q, of degree ≥ 2 defined over a number field K. Let v be a non-archimedean
valuation of K. We say that Φ has critically good reduction at v if any pair of
distinct ramification points of Φ do not collide under reduction modulo v and the
same holds for any pair of branch points. We say that Φ has simple good reduction
at v if the map Φv, the reduction of Φ modulo v, has the same degree of Φ. We prove
that if Φ has critically good reduction at v and the reduction map Φv is separable,
then Φ has simple good reduction at v.

1 Introduction

Throughout this paper K will be a number field and Q the algebraic closure of Q in C.
More generally, for any arbitrary field Ω, the symbol Ω will denote an algebraic closure
of Ω.

In a recent paper, Szpiro and Tucker ([14]) use a particular notion of good reduction
to prove a finiteness result for equivalence classes of endomorphisms of P1

Q, which we

will indicate simply with P1 in the sequel. This result implies the Shafarevich-Faltings
finiteness theorem for isomorphism classes of elliptic curves.
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We recall the definition of good reduction used by Szpiro and Tucker. Before doing
that, we fix some notation. Let OK be the ring of integers of K. For a fixed finite
place v of K, let Ov be the valuation ring and let k(v) be the residue field. We will not
distinguish between the place v and the associated valuation. Let S be a fixed finite
set of places of K containing all the archimedean ones. We denote by OS the set of
S-integers, namely

OS + {x ∈ K | |x|v ≤ 1 for all v /∈ S}.

Let Φ be an endomorphism of P1 defined over K. We denote by RΦ the set of
ramification points defined over Q of the map Φ. Given a valuation v of Q and a subset
E ⊂ P1(Q), we denote by (E)v the subset of P1(k(v)) whose elements are the reduction
modulo v of the elements of E.

We give now the definition of good reduction used by Szpiro and Tucker in [14]:

Definition 1.1. Suppose that v has been extended to Q. Let Φ be an endomorphism
of P1 of degree ≥ 2 defined over K. We say that Φ has critically good reduction (in the
sequel C.G.R.) at v if

1) #RΦ = #(RΦ)v,

2)#Φ(RΦ) = #(Φ(RΦ))v.

As the authors of [14] note, this definition does not depend on the extension of v to Q.
We denote by PGL(2, OS) the quotient group of GL(2, OS) by scalar matrices. It is

the automorphism groups of P1
OS

. In [14] the following equivalence relation on the set of

endomorphisms of P1 is used: two endomorphisms Ψ and Φ of the projective line over
K are S-equivalent if there exist automorphisms γ, σ of P1

OS
such that

Ψ = γK ◦ Φ ◦ σK ,

where γK and σK are the restrictions of γ and σ over P1
K , which has a natural open

immersion in P1
OS

.
With the above notations and definitions, the main result in [14] is the following. Let

K be a number field, n a positive integer and S a finite set of places of K, containing
the archimedean ones. Then there are finitely many equivalence classes of rational maps
Φ : P1 → P1 defined over K of degree n that ramify at three or more points and have
C.G.R. at all valuation v outside S.

In the context of endomorphisms of P1, there is another notion of good reduction.
We give the definition of normalized form for endomorphisms of P1 with respect to a
finite place v of K.

Definition 1.2. Let Φ : P1 → P1 be a rational map defined over K, of the form

Φ([X : Y ]) = [F (X,Y ) : G(X,Y )]

where F,G ∈ K[X,Y ] are coprime homogeneous polynomials of the same degree. Given
a finite place v of K, we say that Φ is in v-reduced form if the coefficients of F and G
are in Ov and at least one of them is a v-unit.
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If we multiply Φ = [F : G] by a non-zero element of K and we factor out any common
factor in Ov among the coefficients of the two polynomials, we can always assume that
a rational map is in v-reduced form. We may now give the following definition.

Definition 1.3. Let Φ : P1 → P1 be a rational map defined over K and let v be a finite
place of K. Suppose that Φ([X : Y ]) = [F (X,Y ) : G(X,Y )] is in v-reduced form. The
reduced map Φv : P1

k(v) → P1
k(v) is defined by [Fv(X,Y ) : Gv(X,Y )], where Fv and Gv

are the polynomials obtained from F and G by reducing their coefficients modulo v.

The second notion of good reduction that we are going to consider is the following:

Definition 1.4. A rational map Φ: P1 → P1 defined over K has simple good reduction
(in the sequel S.G.R.) at a place v if deg Φ = deg Φv.

In both definitions of good reduction we assume that a model or choice of coordinates
for P1 in the domain of Φ is fixed. This assumption represents the main difference
between our definition of good reduction and other similar definitions of good reduction
(e.g. see [1], [5], [17]).

In the above notation, Φ has S.G.R. at v if Fv and Gv have no common factors
over k(v). Alternatively, from a schematic point of view, the above definition means the
following: if we consider Φ as a scheme morphism Φ : P1

K → P1
K , then Φ has S.G.R. at v

if there exists a morphism ΦOv : P1
Ov
→ P1

Ov
which extends Φ, i.e. the following diagram

P1
K P1

K

P1
Ov

P1
Ov

-Φ

? ?
-

ΦOv

is cartesian, where the vertical maps are the natural open immersions. We stress that
in this schematic definition the choice of a model of P1

K corresponds to the choice of the
open immersion of P1

K in P1
Ov

.
The definition of simple good reduction is, perhaps, more natural than the defini-

tion of critically good reduction. However, a rational map on P1(K) associated to a
polynomial in K[z] has simple good reduction outside S if and only if the coefficients
of the polynomial are S-integers and its leading coefficient is an S-unit. Therefore for
sufficiently large n the main theorem of [14] would be false if we considered the simple
good reduction instead of the critically one.

In this paper we are concerned with the relations between these two notions of good
reduction for an endomorphism of P1. As the authors of [SzT] already remarked, the two
notions are not equivalent. They also gave examples where none of the two conditions
implies the other.

Nevertheless, they proved the following proposition, that for the ease of readers we
quote here in a slightly simpler form:
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Proposition 1.5. Let K be a number field with ring of integers OK , v a finite place
of K and Φ(x) = f(x)/g(x) a rational function of degree d with coefficients in OK ,
considered as a rational function from P1 in itself. Suppose that RΦ has 2d− 2 elements
and the leading coefficients of f , g and f ′(x)g(x)− f(x)g′(x) are all v-adic units. Then,
if Φ has C.G.R. at v, it also has S.G.R. at v.

We have obtained a significant improvement of this result.

Theorem 1.6. Let Φ : P1 → P1 be a morphism of degree ≥ 2 defined over K. Let v be
a finite place of K. Suppose that the reduced map Φv is separable. Then the following
are equivalent:

a) Φ has C.G.R. at v;

b) Φ has S.G.R. at v and #Φ(RΦ) = #(Φ(RΦ))v.

We recall that Φv is separable if it induces a separable extension of function fields
(k(v))(x) ⊃ (k(v))(Φv(x)). This is equivalent to say that the element x is separable over
the field (k(v))(Φv(x)). Let Φv(x) = fv(x)/gv(x), where fv and gv are two polynomials
with no common factors and with coefficients in k(v). Then, by definition, x is separable
over (k(v))(Φv(x)) if and only if the minimal polynomial fv(X) − Φv(x)gv(X) has no
multiple roots in the algebraic closure of k((v))(Φv(x)). This is equivalent to fv(X) −
Φv(x)gv(X) /∈ (k(v))(Φv(x))[Xp], where p is the characteristic of k(v). Since Φv(x)
is transcendental over k(v), the last condition is fulfilled if and only if fv(x)/gv(x) /∈
(k(v))(xp). Since k(v) is a finite field it is a perfect field; that allows us to conclude by
saying that the map Φv is separable if and only if it is not a p-th power of a rational
function. For more details about separability see for example [9, Chapter I.4].

The proposition of Szpiro and Tucker follows from the above theorem since the fact
that the leading term of f ′(x)g(x)− f(x)g′(x) is a unit implies in particular that Φv is
separable.

If we remove the condition of separability Theorem 1.6 can be false; for instance,
let us consider Φ(x) = pxn over Q, with p a prime number and n an integer. This
endomorphism has not S.G.R. at p, but it has C.G.R. at p. In this case the reduced map
is constant. One can find also a similar example where the reduced map is not constant.
Take for example the map induced by the polynomial Φ(x) = −3x4 + 4x3. On the other
hand, the map given by Φ(x) = (x − 2)2(x − 4)2 defined over Q, has RΦ = {2, 3, 4,∞}
and Φ(RΦ) = {0, 1,∞}. Hence condition b) of Theorem 1.6 holds at the prime 2, since
Φ has S.G.R. at 2, but Φ has not C.G.R at 2. There are also examples where the map
has both C.G.R. and S.G.R. at a prime p but the separability condition does not hold,
like the family of maps Φ(x) = xp.

Nevertheless, the condition on separability seems to be a good condition. In fact if
p, the integral prime under v, is bigger than the degree of a map Φ, then Φv is separable
if and only if it is not constant. Therefore, a direct consequence of Theorem 1.6 is the
following corollary:
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Corollary 1.7. Let Φ : P1 → P1 be a morphism of degree ≥ 2 defined over K. Let v be a
finite place of K. Let p be the prime of Z under the place v and suppose that p > deg(Φ)
and Φ has C.G.R. at v. Then Φ has S.G.R. at v if and only if Φv is not constant.

Theorem 1.6 establishes some sufficient conditions for endomorphisms of P1 to have
simple good reduction. A general result in this direction is [5, Thm 3.3], where Fulton
proves and extends some results stated by Grothendieck in [6]. Analogue result to
Fulton’s theorem for covers of curves, using different methods, are proved by Beckmann
in [1, Prop. 5.3]. For a similar theorem on plane curves see also [16]. Zannier also
gave another result which is more related to ours. He proved a theorem concerning
the good reduction for some particular covers P1 → P1. The notion of good reduction
used by Zannier is the following one: using the above notation, a rational map Φ of
P1 defined over a field L has good reduction at a prime v if there exist a, b ∈ L such
that the composite map Φ(ax + b) has S.G.R. at v and (Φ(ax + b))v is separable. We
say that Φ has potential good reduction if it has good reduction over a finite extension
of L. We recall that the monodromy group of a non-constant map between two curves
Φ : C → D defined over a field K is the Galois group of the Galois closure of the induced
field extension K(D) ⊂ K(C). Now we are ready to state Zannier’s result:

Theorem 1 in [17] Let L be a field of characteristic zero, with a discrete valuation v
having residue field L0 of characteristic p > 0. Let Φ + f/g ∈ L(t) be a Belyi cover
(i.e. unramified outside {0, 1,∞}) with f(t) =

∏h
i=1(t − ξi)

µi , g(t) =
∏k
j=1(t − ηj)

νj

polynomials of positive degree n, the ξi, ηj are pairwise distinct and the degree of f − g
is equal to n − k − h + 1. If Φ does not have potential good reduction at v, then p
divides the order of the monodromy group and also some nonzero integer of the form∑

i∈A µi −
∑

j∈B vj where A ⊂ {1, . . . , h}, B ⊂ {1, . . . , k}.

The part of this theorem concerning the divisibility of the order of monodromy group
can be seen as an application to curves of genus 0 of Beckmann’s result in [1]. However,
the method used by Zannier is completely different from the Beckmann’s and Fulton’s
ones. Moreover, Zannier’s result gives some new sufficient conditions to have good
reduction for Belyi covers.

There is a substantial difference between our result and the Beckmann’s and Zannier’s
ones. Our Theorem 1.6 deals with the “good reduction” for a fixed model of a cover
P1 → P1. The results obtained by Zannier and Beckmann give some sufficient conditions
for the existence of a model, of a given cover, with good reduction. For example, the
polynomial Φ(z) = a2z2 for all a ∈ Z does not have S.G.R. at all prime dividing the
integer a, but it has good reduction according to Beckmann’s and Zannier’s definitions.

Zannier considers only covers P1 → P1 unramified outside {0,∞, 1}, because these
covers are strictly related to the problem of the existence of distinct monic polynomials
F,G having roots of prescribed multiplicities and such that deg(F − G) is as small as
possible, according to Mason’s abc theorem. Zannier treated this existence problem in
[15] in characteristic 0 and in [17] in positive characteristic.

We conclude with an arithmetical and dynamical application of our result. Let E
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be an elliptic curve defined over a number field K. Let us consider a fixed model for
E given by an equation y2 = F (x) = x3 + px + q. Let S be the minimal finite set of
places of K containing all the archimedean ones, all the finite places above 2 and such
that the model of E is defined over OS with good reduction at all finite places not in S.

As proved in [14], the corresponding Lattés map Φ(x) = (F ′(x))2−8xF (x)
4F (x) has both C.G.R.

and S.G.R. at v, for all places v /∈ S. If P ∈ E then Φ(x) is the x-coordinate of 2P ,
where x is the x-coordinate of P . The set of K–rational pre-periodic points of Φ is the
set of x–coordinates of the K–rational torsion points of E (see [13, p.33]). Therefore
informations about pre-periodic points for Φ provide informations about torsion points
of E. This is one of the motivations to study the arithmetic of dynamical systems, and
in particular the set of pre-periodic points of rational maps having S.G.R. outside a
prescribed set of places. The application that we present involves a theorem proved by
Canci in [3] which is an extension to pre-periodic points of a result about periodic points
due to Morton and Silverman (see [10]) in terms of simple good reduction.

It is natural to study pre-periodic points of arithmetical dynamical systems, given by
maps having C.G.R. outside a prescribed set. Unfortunately, the notion of C.G.R. may
not be preserved under iteration. Consider for example Φ(x) = (x − 1)2, where Φ has
C.G.R. everywhere but Φ2 (i.e. Φ ◦ Φ) does not have C.G.R at 2. On the contrary, the
condition of S.G.R. is preserved under iteration. So it is a good notion for dynamical
studies.

Before stating the dynamical result obtained by using our Theorem 1.6, Theorem 1
in [3] and Corollary B in [10], we give some notations.

Let K, S, v and Φv be as above. We denote by #PrePer(Φ,P1(K)) the cardinality
of the set of K–rational pre-periodic points of the map Φ.

Corollary 1.8. Let t, d and D be fixed integers with d ≥ 2. Then there exists a constant
C = C(t, d,D) such that given a number field K of degree D, a finite set of places S of
K of cardinality less than t, a rational map Φ : P1 → P1 of degree d defined over K,
such that Φ has C.G.R. at every place v outside S and Φv is not constant for each v not
in S, then the following inequalities holds:

#PrePer(Φ,P1(K)) ≤ C(t, d,D).

A bound C(t, d,D) as in the above corollary is effectively computable and it could be
calculated with a simple formula involving the effective bounds proved in [3, Theorem 1]
and in [10, Corollary B]. The idea behind our proof could provide an effective formula.
But the estimate is not so interesting; the most important part in the above corollary is
the existence of such a bound.

Corollary 1.8 represents a very particular case of the Uniform Boundedness Conjec-
ture for pre-periodic points stated by Morton and Silverman in [10].

Computationally speaking it is worth noticing that, given a place v of K, it is easier
to check that Φv is not constant than checking that Φ has S.G.R. at v. In the first case
we have to compute

(
d+1

2

)
determinants of 2 × 2 matrices, while in the second case we

have to compute the determinant of a (2d + 2) × (2d + 2) matrix. In the first case we
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have to do an O(d2) number of calculations and in the second case the number is an
O(d3). Note that the LU decomposition of a matrix reduce the number of operations
from O(d!), necessary by using the Leibniz rule, to O(d3) calculations (e.g. see [11]).

Here is a short overview of the contents of the paper. In section §2 we prove Theo-
rem 1.6. The key result is Lemma 2.6 in which we give a characterization of rational
maps having C.G.R. and such that the reduced map is separable. The proof is obtained
interpretating the condition of C.G.R. in terms of the coefficients of an opportune re-
presentative in the class of equivalence of the rational map. In section §3 we give an
example in which Theorem 1.6 cannot be applied and we explicitly treat the cases of
Galois covers (see Proposition 3.2, which, in fact, is more general) and rational maps of
degree two (see Proposition 3.3). The last section is dedicated to the proof of Corollary
1.8.
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2 Proof of main results

From now on, K will be a number field, v a non-archimedean valuation of K and Ov
the associated valuation ring. For any polynomial h(x) ∈ Ov[x], hv(x) will denote the
polynomial obtained by reducing the coefficients of h(x) modulo v. In the same way for
any α ∈ K we will denote its reduction modulo v by αv.

Given an endomorphism Φ of P1 with Φ([X : Y ]) = [F (X,Y ) : G(X,Y )], where
F,G ∈ Ov[X,Y ] are homogeneous coprime polynomials of the same degree d, with an
abuse of notation we still denote by Φ the rational function Φ(x) = f(x)/g(x), where
f(X/Y ) = F (X,Y )/Y d and g(X/Y ) = G(X,Y )/Y d. We can reverse this argument, so
to any rational function Φ ∈ K(x) we associate a unique endomorphism Φ of P1. From
now on, we suppose that Φ(x) = f(x)/g(x) is a rational function defined over K written
in v-reduced form.

A rational function

Φ(x) =
f(x)

g(x)
=
adx

d + · · ·+ a0

bdxd + · · ·+ b0
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is in v-reduced form if ai, bj ∈ Ov for 0 ≤ i ≤ d and 0 ≤ j ≤ d, ad 6= or bd 6= 0 and

min{v(ad), v(ad−1), . . . , v(a0), v(bd), . . . , v(b0)} = 0.

In particular we have

Φv(x) =
fv(x)

gv(x)
=

(ad)vx
d + · · ·+ (a0)v

(bd)vxd + · · ·+ (b0)v
.

Note that in general fv and gv may not be coprime.
We define the following polynomial in Ov[x]:

Φ(1)(x) + f ′(x)g(x)− f(x)g′(x). (1)

Its degree is less or equal to 2d− 2. It is quite easy to check that

RΦ \ {∞} = {x ∈ Q | Φ(1)(x) = 0}

and ∞ is a ramification point if and only if the polynomial has degree < 2d− 2.
It may happen that the set of primes of critically bad reduction increases if we

compose with homotheties which are not v-invertible, like for example: f(x) = x2 + x
and A(x) = x/3. The map f has C.G.R. at 3 but the map fA = A◦f ◦A−1 has not. The
following lemma shows that the two notions of good reduction at a place v are preserved
under equivalence with v-invertible elements of PGL(2, Ov).

Lemma 2.1. Suppose that Φ has S.G.R. (resp. C.G.R.) at a place v. Suppose that α,
β are invertible rational maps associated to elements A,B ∈ PGL(2, Ov), respectively.
Then α ◦ Φ ◦ β has S.G.R. (resp. C.G.R.) at v.

Proof. To prove that Φ has S.G.R. we use the fact that the composition of maps having
S.G.R. has S.G.R. (see [13, Thm 2.18]). To prove that Φ has C.G.R. we use [13, Prop.
2.9]: given P1, P2 ∈ P1 such that P1 6≡ P2 (mod v) then if A ∈ PGL(2, Ov) we have that
A(P1) 6≡ A(P2) (mod v).

The condition of the previous lemma is not necessary, consider for example: f(x) =
x2 + 3x and A(x) = x/3, then f as well fA = A ◦ f ◦ A−1 have C.G.R. at 3, even if
A 6∈ PGL(2,Z(3)).

We shall use the following equivalence relation:

Definition 2.2. Two rational maps Φ and Ψ defined over K are v–equivalent if there
exist two rational maps α and β associated to two invertible elements A,B ∈ PGL(2, Ov),
respectively, such that Φ = α ◦Ψ ◦ β.

In general, the reduction modulo v of rational maps does not commute with the
composition of rational functions. For example consider

Φ(x) =
x2 + x

x+ p
and Ψ(x) = px
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for a given prime integer p. We have

(Φ ◦Ψ)p =
x

x+ 1
and Φp ◦Ψp = 1.

However, if the maps Φ and Ψ have both S.G.R. at v then

(Φ ◦Ψ)v = Φv ◦Ψv.

(see Theorem 2.18 in [13]). In order to have the commutativity of reduction modulo v
and composition, it is not always necessary that both maps have S.G.R.. For example,
the following result holds:

Lemma 2.3. Let Φ be an endomorphism of P1 defined over K. Let α and β two
v-invertible rational maps (i.e. they are associated to two elements in PGL(2, Ov), re-
spectively). Then

(α ◦ Φ ◦ β)v = αv ◦ Φv ◦ βv.

Proof. Let

α(x) =
ax+ b

cx+ d
, Φ(x) =

f(x)

g(x)

be in v-reduced form. Now observe that the function

(α ◦ Φ)(x) =
af(x) + bg(x)

cf(x) + dg(x)
(2)

is in v-reduced form too. This follows by considering a representation of α−1 in v-reduced
form: let

α−1(x) =
lx+ r

sx+ t
,

where l, r, s, t ∈ Ov and the following identity holds(
l r
s t

)(
a b
c d

)
=

(
1 0
0 1

)
,

then (
l r
s t

)(
af(x) + bg(x)
cf(x) + dg(x)

)
=

(
f(x)
g(x)

)
.

If (2) were not in the reduced form, then also Φ = f/g would not. Therefore we have

(α ◦ Φ)v(x) =
avfv(x) + bvgv(x)

cvfv(x) + dvgv(x)
= (αv ◦ Φv)(x).

A similar argument can be given to prove that for any rational function Ψ defined over
K, then (Ψ ◦ β)v = Ψv ◦ βv. Now we consider Ψ = α ◦ Φ and we obtain

αv ◦ Φv ◦ βv = (α ◦ Φ)v ◦ βv = (α ◦ Φ ◦ β)v.

9



Note that by Lemma 2.3 it follows immediately that Φv is separable if and only if
(α ◦ Φ ◦ β)v is separable.

Now we prove a lemma which contains a statement whose proof is completely trivial.
However, this lemma, despite its simplicity, will be useful several times.

Lemma 2.4. Let Φ : P1 → P1 be a morphism defined over K. Let w, z, x, y ∈ P1(K)
such that w 6≡ z mod v, Φ(x) = z and Φ(y) = w. Then there exists Ψ in the same v–
equivalence class of Φ with Ψ = α◦Φ◦β where α and β are two automorphisms associated
to two elements in PGL(2, Ov), respectively, with α(w) = 0, α(z) =∞, β−1(x) =∞; in
particular we have Ψ(∞) =∞. Furthermore, if x 6≡ y mod v, the automorphism β can
be taken with the additional property β−1(y) = 0, which means Ψ(0) = 0.

Proof. The proof easily follows from the fact that the action of PGL(2, Ov) is transitive
on the pairs of elements of P1(K) which does not have the same reduction modulo v.

It is clear by definition of C.G.R. that, given an arbitrary finite extension L of K,
a rational map Φ defined over K has C.G.R. at v if and only if Φ, as a rational map
defined over L, has C.G.R. at one of the extensions ṽ of v in L. In this way, without
loss of generality, up to enlarging K, we can suppose that all ramification points of Φ
are K–rational. The same holds also for S.G.R. in the sense that it is completely trivial
that a rational map has S.G.R. over K if and only if it has S.G.R. over a finite extension
L of K. Therefore we can suppose K enlarged so that if a rational map Φ has C.G.R.
at a place v, then we may assume that {0,∞} ⊂ RΦ, Φ(0) = 0 and Φ(∞) =∞.

Now we state a simple lemma that contains some characterizations of having S.G.R.
at v.

Lemma 2.5. For a morphism Φ : P1 → P1 of degree ≥ 1 the following are equivalent:

a) Φ has S.G.R. at a finite place v;

b) Φv is not constant and for any x1, x2 ∈ P1 if x1 ≡ x2 mod v then Φ(x1) ≡ Φ(x2)
mod v;

c) Φv is not constant and there exist w, z ∈ P1 with w 6≡ z mod v such that for any
x1, x2 ∈ P1 with Φ(x1) = w and Φ(x2) = z then x1 6≡ x2 mod v.

Proof. a)⇒ b). If we consider the following commutative diagram

P1
k(v) P1

k(v)

P1
Ov

P1
Ov

-Φv

? ?
-

ΦOv

10



where the vertical map are the natural closed immersions, then it is easy to prove the
above assertion.

b)⇒ c). This is immediate.
c) ⇒ a). Let Φ(x) = f(x)/g(x) be a rational function defined over K, with f, g ∈

Ov[x] coprime, written in v-reduced form. By Lemma 2.1 and Lemma 2.4, up to enlarging
K and taking a suitable element in the equivalence class of Φ, we can assume that w = 0,
z = ∞, and Φ(∞) = ∞. So deg f > deg g. In this situation the preimage of w is the
set of roots of f(x) and the preimage of z is the union of the set of roots of g(x) and
{∞} (we enlarge the base field K so that all these elements are contained in it). We
observe that, by assumption c), any preimage of 0 does not coincide modulo v with any
preimage of ∞. Since Φ(∞) = ∞, any preimage of 0 does not coincide modulo v with
∞. This means that the roots of the polynomial f(x) have non-negative valuation. This
and the fact that Φv is not constant imply that f(x) has v-invertible leading coefficient.
Under this assumption Φ has S.G.R. at v if and only if f and g have no common roots
modulo v. In this situation this last condition is equivalent to the statement in c).

The previous characterizations of S.G.R., especially part c), will be used just to
shorten some of the following proofs. On the contrary next lemma, which gives another
characterization of having C.G.R. when the reduced map is separable, will play an
important role in the proof of Theorem 1.6.

Lemma 2.6. A morphism Φ : P1 → P1 of degree ≥ 2 has C.G.R. at a finite place v and
Φv is separable if and only if

1) Φv is not constant;

2) if x1 ∈ RΦ, x2 ∈ Φ−1(Φ(RΦ)) then x1 ≡ x2 mod v if and only if x1 = x2;

3) the ramification index of any ramification point is not divisible by the characteristic
of the residue field k(v).

Proof. We begin by proving that if Φ has C.G.R at v then Φv is separable if and only
if 1), 2) and 3) hold. Let x1 and x2 be as in 2). By Lemma 2.4, without loss of
generality, we may assume x1 =∞,Φ(∞) =∞, 0 ∈ Φ(RΦ) and x2 ∈ Φ−1(0)

⋃
Φ−1(∞).

In particular deg(f) > deg(g). Since C.G.R. is stable under a finite extension of the
field of the coefficients of Φ and the properties 1), 2) and 3) do not depend on the field
of definition, we may assume that all the polynomials we are dealing with have linear
factors over K. So the following is the factorization of Φ(1)(x) (see (1)) over K:

Φ(1)(x) = θ
∏
k

(x− αk)ek (3)

where θ ∈ Ov is the leading coefficient of Φ(1)(x) and {αk}k = RΦ \ {∞}. Since Φ has
C.G.R. at v, the αk’s are in Ov. Since deg(f) > deg(g), by direct computation we get
that

θ = lc(f)lc(g)(deg f − deg g) (4)

11



where, for a polynomial h, lc(h) denotes the leading coefficient of h.
Therefore we get that

Φ(1) 6≡ 0 (mod v)⇔ θ 6≡ 0 (mod v)

since each αk is a v-integer.
Let fv and gv be the reduction modulo v of the polynomials f and g, respectively. If

we have
fv(x) = h(x)f1(x) , gv(x) = h(x)g1(x)

with suitable h, f1, g1 ∈ k(v)[x] and f1, g1 coprime, then h(x) is not zero because Φ =
f/g is in v-reduced form. Furthermore, if (Φ(1))v(x) is the reduction modulo v of the
polynomial Φ(1)(x), we have that

(Φ(1))v(x) = h(x)2(f ′1g1 − f1g
′
1).

Hence (Φ(1))v is zero if and only if f ′1g1− f1g
′
1 is zero, which is equivalent to Φv = f1/g1

being inseparable.
Therefore Φv is separable if and only if the leading coefficients of f and g are v-units

and deg f − deg g is not divisible by the characteristic of k(v). The ramification index
at ∞ is exactly equal to deg f − deg g, hence it is not divisible by the characteristic of
k(v).

If the leading coefficients of f(x) and g(x) are v-units then all the elements in Φ−1(0)∪
Φ−1(∞) different from ∞ are not equivalent to ∞ modulo v. In particular this holds
for x2. Hence we have proved that under the assumption that Φ has C.G.R. at v, the
separability of Φv is equivalent to conditions 1), 2) and 3).

Now we prove that conditions 1), 2) imply that Φ has C.G.R. at v. By 2), in order
to prove that Φ has C.G.R. at v, it is sufficient to verify the condition on the branch
locus. We have to prove that for any pair of distinct points y1, y2 ∈ Φ(RΦ), they are also
distinct modulo v. Again from Lemma 2.4, and by condition 2), we can suppose that
y1 = ∞, Φ(∞) = ∞, Φ(0) = y2, and 0,∞ ∈ RΦ. We write Φ in the following v-normal
form

Φ(x) =
adx

d + · · ·+ a0

bmxm + · · ·+ b0
=

ad
∏
i(x− ηi)

bm
∏
j(x− ρj)

(5)

where d > m+ 1 and ai, bj ∈ Ov for all indexes i, j. Since conditions 1) an 2) are stable
by extension field and the critically good reduction does not depend on the field of
definition, we can suppose that K contains all the roots ηi and ρj . Note that y2 = a0/b0.
Since any root ρj of the denominator bmx

m + · · ·+ b0 is in the fiber of∞ ∈ RΦ and also
0 is a ramification point, then by 2) each ρj has to be a v-unit. Since Φv is not constant,
then b0 = bm

∏
j ρj is a v-unit, thus v(y2) ≥ 0. Therefore the reduction modulo v of y2

is not ∞. This proves that Φ has C.G.R at v.

Remark 2.7. We stress that in the second part of the proof we show that conditions
1) and 2) imply that Φ has C.G.R. at v. The condition 3) is only necessary for the
separability of Φv.

12



Proof of Theorem 1.6. Firstly we prove that a) ⇒ b). Let Φ(x) = f(x)/g(x) be a
rational function defined over K, written in v-reduced form, with f, g ∈ Ov[x] coprime.
By Lemma 2.4 we can assume that {0,∞} ⊂ RΦ and Φ(0) = 0, Φ(∞) =∞. In particular
we have that deg(f) > deg(g). We use here the notation of the proof of Lemma 2.6, see
in particular formula (3). Furthermore, we suppose K enlarged so that it contains all
roots of the polynomials f, g and Φ(1).

Let us suppose that Φ has not S.G.R. at v. This means that there exist β1 ∈ Φ−1(0)
and β2 ∈ Φ−1(∞) such that β1 ≡ β2 mod v. Let us define βv + (β1)v = (β2)v. Note
that it is not possible that βv is ∞, by part 2) of Lemma 2.6. Since

(Φ(1))v(x) = f ′v(x)gv(x)− fv(x)g′v(x),

we have that βv is a root of the polynomial (Φ(1))v. Since Φv is separable, the polynomial
(Φ(1))v is not zero. Thus any root of the polynomial (Φ(1))v is the reduction modulo v
of a ramification point αi of Φ. Since βv is a root of Φ(1)(x), it is equal to the reduction
modulo v of one of the ramification points αi. Clearly, αi 6= β1 or αi 6= β2. This
contradicts 2) of Lemma 2.6.

We prove now that b) implies a). Since K has characteristic 0, the Riemann-Hurwitz
Formula in our situation becomes:

2 deg Φ− 2 =
∑

P∈P1(Q)

(eP (Φ)− 1). (6)

Since the map Φv is separable, (6) holds for Φv. However, this map is defined over k(v),
a finite field with positive characteristic, so we could have wild ramification. Let RΦv be
the ramification divisor associated to the map Φv. By [7, Prop. 2.2] we have that

deg RΦv ≥
∑

P∈P1(k(v))

(eP (Φv)− 1).

Since Φ has S.G.R. at v, by Riemann-Hurwitz Formula we have

2 deg Φ− 2 = 2 deg Φv − 2 = deg RΦv . (7)

For any ramification point P of Φ, the point Pv ∈ P1(k(v)) (i.e. the reduction mod
v of the point P ) is a ramification point for Φv and the ramification index ePv(Φv) is
equal or grater than the ramification index eP (Φ). Furthermore, by the condition of
the branch locus Φ(RΦ) of Φ, if Q1, Q2 ∈ Φ(RΦ) are distinct points, then also the
points (Q1)v, (Q2)v ∈ P1(k(v)) are distinct and by Lemma 2.5 the sets (Φ−1(Q1))v and
(Φ−1(Q2))v are disjoint. Thus the following inequalities hold

deg RΦv ≥
∑

P∈P1(k(v))

(eP (Φv)− 1) ≥
∑

P∈P1(Q)

(eP (Φ)− 1).

If there exist two distinct ramification points P1, P2 ∈ RΦ such that (P1)v = (P2)v,
then by the S.G.R. condition we have (Φ(P1))v = (Φ(P2))v and by the condition on the

13



branch locus the identity Φ(P1) = Φ(P2) holds. In this situation the second inequality
becomes strict:

deg RΦv ≥
∑

P∈P1(k(v))

(eP (Φv)− 1) >
∑

P∈P1(Q)

(eP (Φ)− 1)

which gives a contradiction with identities (6) and (7).

3 Some examples

In this section we consider some cases in which the residue map is not separable, so that
the main theorem cannot be applied directly. The following is an example in which the
residue map is not separable and the implication b)⇒ a) in Theorem 1.6 does not hold.
The example also shows that the condition C.G.R. is not stable under composition of
maps.

Example 3.1. The set of ramification points of the rational map Φ(x) = (x − 1)2 is
RΦ = {∞, 1} and the branch locus is Φ(RΦ) = {∞, 0}. The set of ramification points of
Φ2 = Φ◦Φ is RΦ2 = {∞, 0, 1, 2} and the branch locus is Φ2(RΦ2) = {∞, 0, 1}. Therefore
Φ has C.G.R. at all finite places v and Φ2 does not have C.G.R. at 2. Given any finite
place v, we have that Φ2 has S.G.R. at v and any two distinct points of the branch locus
of Φ2 remain distinct after reduction modulo v. Therefore Theorem 1.6 does not apply
to Φ2 because it is inseparable modulo 2.

Proposition 3.2. Let Φ : P1 → P1 be a morphism defined over K of degree ≥ 2 such
that Φ−1(Φ(RΦ)) = RΦ (e.g. a Galois cover). Then the following are equivalent:

a) Φ has S.G.R and C.G.R. at v;

b) Φv is not constant and #RΦ = #(RΦ)v.

Proof. We have just to prove that b) implies a). We remark that since Φ−1(Φ(RΦ)) = RΦ

then condition b) is equivalent to conditions 1) and 2) of Lemma 2.6. Then by Lemma
2.6 end Remark 2.7 we obtain that Φ has C.G.R at v.

Now it is clear that Φ has S.G.R. at v using the hypothesis and Lemma 2.5.

If the degree of the map is equal to 2, we have the following simple situation:

Proposition 3.3. Let K be a number field, v a finite place of K and Φ a rational map
of degree 2. Then:

1. If v does not lie above 2, then

Φ has S.G.R. at v ⇔ Φ has C.G.R. at v and Φv is not constant.

2. If v lies above 2, then the following are equivalent:
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i) Φ has S.G.R. at v and Φ2 factors through the relative Frobenius of P1
Ov/2Ov

;

ii) Φ has C.G.R. at v and Φv is not constant.

Remark 3.4. In the statement above, by Φ2 we denote the restriction of Φ to the
scheme P1

Ov/2Ov
. We refer to [8, sec. 3.2.4] for the notion of the relative Frobenius.

Proof. The if part of the first case and (ii)⇒ (i) of the second case, except the sentence
on the inseparability of Φ2, follow from Proposition 3.2. If Φ has C.G.R by Lemma 2.4,
we can assume that Φ is of the form ax2. Then, if v is above 2, Φ2 is purely inseparable.

Now let us suppose that Φ has S.G.R. at v. By Lemma 2.4 we can suppose that
∞ ∈ RΦ and Φ(∞) = ∞. Therefore Φ has the form ax2 + bx + c with a, b, c ∈ K. By
Proposition 3.2 we have only to check the condition on the ramification locus in order
to prove that Φ has C.G.R at v. Since Φ has S.G.R. at v, then a is a v–unity and b, c
are v–integers. The set of ramification points of Φ is:

RΦ =

{
∞,− b

2a

}
.

Now, if v is not above 2, then 2a is a v-unity so that Φ has C.G.R. at v. If v is above 2
and Φ2 is purely inseparable, then 2 | b are in Ov. Hence, also in this case Φ has C.G.R.
at v.

4 An application to arithmetical dynamics

As already remarked in the introduction, the notion of C.G.R. does not have a good
behaviour with dynamical problems associated to a rational map.

The next example shows that the behaviour of the critical good reduction under
iteration of a rational map can be truly bad. Indeed, we give an example of a rational
map Φ defined over Q such that it does not exist a finite set S of valuations of Q with
the property that all iterates of Φ have C.G.R. at all finite valuations outside S.

Example 4.1. Consider the rational function Φ(x) = x(x − 1). Its set of ramification
points is RΦ = {∞, 1/2} and its branch locus is Φ(RΦ) = {∞,−1/4}. Hence the map
Φ does not have C.G.R. only at 2. Let Φn be the n–th iterated map of Φ. We denote
by Bn the branch locus of Φn, that is

Bn = Φn(RΦn) =

n⋃
i=1

Φi(RΦ) = {∞} ∪ {Φi(1/2) | 1 ≤ i ≤ n}.

Note that the element 1/2 is not a preperiodic point for Φ. Indeed we have

Φi(1/2) =
ai
2i

for any index i ≥ 1

where the a′is are suitable odd integers. Therefore the sequence {Bn} of sets of elements
in {∞} ∪Q is strictly increasing. Let S be a finite fixed set of finite places of Q. Let p
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be the minimum of the prime integers that are below a valuation not in S. Thus any set
of elements in {∞} ∪Q of cardinality bigger than p+ 1 has two distinct points that are
equal modulo at least at one valuation outside S. Hence it does not exist a finite set S
of valuation of Q such that all iterates of Φ have C.G.R. at all finite valuations outside
S.

If Φ is a rational map having C.G.R at a valuation v and Φv is separable, then, by
Theorem 1.6, Φ has S.G.R. at v. Therefore it has good behaviour in a dynamical sense.
The proof of Corollary 1.8 is a simple application of Theorem 1.6, Corollary B of [10]
and Theorem 1 of [3].

In [10, Corollary B] Morton and Silverman proved that if Φ is a rational map of
degree ≥ 2 which has good reduction outside a finite set S of valuations of K containing
all the archimedean ones and P ∈ P1(K) is a periodic point with minimal period n, then
we have the inequality

n ≤ [12(t+ 1) log(5(t+ 1))]4[K:Q]

where t = |S|.
In [3, Theorem 1], Canci extended the Morton and Silverman’s result to any finite

orbit (so he considered also pre-periodic points). With the same hypothesis as in [10,
Corollary B], the Canci’s result says that there exists a number c(t), depending only
on t, such that the length of every finite orbit in P1(K), for rational maps having good
reduction outside S, is bounded by c(t). The number c(t) can be chosen to be equal to[

e1012(t+ 1)8(log(5(t+ 1)))8
]t
.

Proof of Corollary 1.8. Let Φ be an endomorphism of P1 as in the hypothesis of the
corollary. For any prime integer p ≤ deg Φ we consider all valuations vp over K which
extend the valuation associate to p. We enlarge S adding all these valuations vp for all
p ≤ deg Φ. The cardinality of the new set S depends only on t, the degree d of the map
and the degree D of K over Q. With this enlarged set S, for any v /∈ S, the reduced map
Φv is separable if and only if it is not constant. Therefore the map Φ has S.G.R. at any
valuation outside S. We denote by b(t, d,D) the lowest integer bigger than the Morton
and Silverman’s bound, which depends on the cardinality of the enlarged set S. There
exists a bound B(t, d,D) which bounds the cardinality of the set of K–rational periodic
points of Φ. Indeed, any K–rational point is a fixed point for the map Φb(t,d,D)!. Hence
we can take B(t, d,D) = b(t, d,D)! + 1. By the Canci’s Theorem 1 in [3] there exists a
number, which depends only on the cardinality of the enlarged set S, that bounds the
length of every finite orbit in P1(K) for Φ. Since the cardinality of the enlarged set S
depends only on t, d,D, also this bound depends only on t, d,D. We denote by c(t, d,D)
this number. Since the preimage of each point has at most d points, any K–rational
periodic point of Φ is contained in at most dc(t,d,D) finite orbits. Thus we can take
C(t, d,D) = B(t, d,D)dc(t,d,D)c(t, d,D).

Any number depending on t, d,D in our proof could be not optimal. Our aim was
to show the existence of a bound C(t, d,D) and not to find an optimal limit.
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