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In this paper, we are interested in the spatio-temporal dynamics of the transmembrane potential in paced isotropic and
anisotropic cardiac tissues. In particular, we observe a specific precursor of cardiac arrhythmias that is the presence of
alternans in the action potential duration. The underlying mathematical model consists of a reaction-diffusion system
describing the propagation of the electric potential and the nonlinear interaction with ionic gating variables. Either
conforming piecewise continuous finite elements or a finite volume-element scheme are employed for the spatial dis-
cretization of all fields, whereas operator splitting strategies of first and second order are used for the time integration.
We also describe an efficient mechanism to compute pseudo-ECG signals, and we analyze restitution curves and alternans
patterns for physiological and pathological cardiac rhythms. Copyright © 2014 John Wiley & Sons, Ltd.
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1. Introduction

Cardiac arrhythmias represent one of the major causes of morbidity and mortality in industrialized countries. They are associated with
important risk factors and comorbidities as hypertension, diabetes, and other aging pathologies, in particular with strokes. Arrhythmias
represent, in fact, a pathology included in the priority investigation lines of the European research program HORIZON 2020. Interna-
tional strategies have been oriented toward the development of new and more efficient methods and devices of prevention, as well as
medical care in order to face the growing costs connected with an increasing life expectancy. The study of such a complex phenomenon
requires, therefore, a Systems Biology multidisciplinary and integrative approach, where clinical and experimental investigations are
integrated by in silico analysis.

It is well known that heart tissue is a complex biological excitable media that supports rotating activation waves [1,2] which induce
regular and irregular rhythms leading to life threatening arrhythmias. Spiral (two dimensional) and scroll (three dimensional) waves
have been experimentally observed and theoretically predicted during tachycardia and out-of phase stimuli. They are recognized to
be responsible for fibrillation scenarios [3,4] both in normal and altered thermal conditions [5, 6].

Based on these considerations, the mathematical modeling of cardiac electrical activity has received a great deal of interest in the last
few decades [7]. On the lines of the pioneering work of Hodgkin—-Huxley, their experimental methodology and theoretical formalism
[8], a variety of mathematical models have been introduced to capture some important features of this complex phenomenon, typically
regarding the heart as an excitable medium, therefore studying the underlying mechanisms within the framework of reaction-diffusion
systems (see, e.g., [9]). The quantity and quality of such studies has been also boosted by the increasing capacity of modern computers
and numerical techniques (see, e.g., [10]). Virtually, all major types of numerical methods have been successfully employed to simulate
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the so-called monodomain or bidomain equations in 3D geometries, including finite differences [11, 12], finite volume formulations
[13,14], finite elements (FEs) [15-19], and spectral discretizations [20].

In this work, we focus on the monodomain mathematical formalism to study emerging spatio-temporal dynamics and alternans
behavior in two-dimensional and three-dimensional domains. The underlying system of equations consists of a parabolic PDE describ-
ing the propagation of membrane depolarization, nonlinearly coupled with a set of ODEs governing the dynamics of gating variables,
and ionic concentrations. The membrane kinetics are modeled adopting the four-variable minimal phenomenological model for car-
diac action potential propagation from [21]. Despite the current level of ionic models complexity (state-of-the-art models may include
more than sixty variables, see, e.g., [22]), the minimal model allows us to reproduce key experimental-based cardiac action potential
restitution properties and to investigate pro-arrhythmic states with comparable accuracy to more sophisticated ionic models.

In the present work, we further introduce dedicate numerical solvers based on piecewise linear FEs and operator splitting strategies
for the space-time discretization. Differently from other computational work in cardiac electrophysiology, these schemes, under some
particular conditions, are able to provide accurate and efficient numerical approximations. In addition, we introduce a finite volume-
element (FVE) method, where one of the main goals is to improve the mass conservation properties of the overall discretization. FVE
methods are nonstandard hybrid discretizations that combine some features of classical FE methods and finite volume schemes, such
as smooth derivability of error estimates in natural norms and local conservativity of fluxes. We recall that the main idea is to write a
finite volume method on an adjoint mesh and to use a piecewise constant interpolation operator to recast the formulation as a Petrov-
Galerkin scheme. Different flavors of these methods have been typically applied in the simulation of flow processes [23-28], and up to
our best knowledge, the present paper is the first one addressing FVE discretizations specifically tailored for cardiac-related problems.
We point out that a somewhat related method has also been applied to cardiac electrophysiology in [29]; however, our method is more
closely linked to the formulations introduced in [30-33] for reaction-diffusion systems. Another goal of this paper is to quantitatively
assess the accuracy of the proposed numerical schemes in terms of correct reproduction of several electrophysiological scenarios of
interest in cardiac modeling.

The phenomenon of alternating variations in the amplitude of, for example, membrane action potential waves over successive car-
diac cycles is commonly known as cardiac alternans (see, e.g., [34-36]). Our extended numerical study in two and three dimensions
allows us to characterize the behavior of these alternans in terms of reconstructed ECG signals (called pseudo-ECG [60]), conduction
velocity (CV), and action potential duration (APD) restitution curves [37], in the framework of the so-called forward problem in elec-
trocardiology. Such a complex topic exhibits several unknowns both from the experimental and theoretical points of view. Moreover,
different numerical results are still debated in terms of which mathematical models are able to correctly reproduce the spatio-temporal
onset and transition of alternans patterns toward ventricular fibrillation. In this work, we show the ability of the proposed numerical
schemes to accurately render space and time alternans patterns and discuss and analyze in detail the tissue-dependent properties (i.e.,
myocardial fiber rotational anisotropy [38]) of the studied phenomena.

The remainder of this paper is organized as follows. Section 2 outlines the mathematical model of cardiac electrophysiology including
the monodomain equations, the choice of ionic model, and presents the main elements of ECG modeling and observation of alternans.
We describe in Section 3 the FE and FVE discretizations along with the operator splitting employed in our numerical framework. A set
of illustrative examples is collected in Section 4, and we close with some remarks and discussion in Section 5.

2. Governing equations, pseudo-ECG modeling, and alternans dynamics

2.1.  The monodomain model

Let @ C R3 denote a domain with smooth boundary 9Q and consider a finite time interval (0, T) for a fixed T > 0. The so-called
monodomain equation (also known as cable equation) results from the Kirchhoff’s current law, and it addresses single cell excitation,
that is, depolarization and repolarization dynamics, describing the propagation of the transmembrane potential through the tissue
via a diffusive Fourier formalism [39]. It consists in the following reaction—diffusion system where the unknown quantities are the
transmembrane potential v = v(x, t) and a vector field of s ionic variables (named gating variables) i = i(x, t):

Conx "0 =V - (0VV) + x lon(V,)) = lapp  IN Q2 x (0, T], o0
dii —m(v,) =0 inQ x(0,T]. '
Here, Cp, is the membrane capacitance per unit area, y is the surface-to-volume ratio of the myocardium, liy, is the sum of the ionic
currents, lypp is an extracellular current density stimulus, and o = ofl + (05 — o7) fo ® fo is a transversely isotropic conductivity tensor
representing different myocardial propagation velocities oy, o, in the parallel and perpendicular myofiber directions, fo, so, respectively
(see, e.g., [17]). As usual, the symbols d;, d;, V, and V- represent the partial and total derivatives with respect to time t, spatial gradient
and divergence operators, respectively.

The cardiac muscle consists of densely packed cells organized in such a way that the mean electric conductivity is much higher in
the direction of the fibers fy. In Cartesian coordinates, we have

0 €052 0(z) + 05 sin? 0(2) (o7 — 05) sinB(z) cos B(z) O
o = | (o7 — 05)sinB(z) cos H(z) ofsin®6(z) + o5cos26(z) O |,
0 0 o

where 6(z) denotes the angle between the fiber and the y—axis in each plane (Figure 1).
|
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Figure 1. Sketch of the 3D slab of cardiac tissue employed in the simulations. The fibers vary transmurally from 60° at z = 1 to —60° on z = 0. Such conditions
are representative of the left ventricle wall.

System (2.1) is complemented with zero-flux boundary conditions for the transmembrane potential [0 (x)Vv] - n = 0 on 0%,
representing that the tissue is isolated, and suitable initial potential and ionic distributions v(x, 0) = vy, i(x,0) = i° are identified.

The specification of the reaction terms l,, and m determines, respectively, the ionic currents across the cell membrane and concen-
tration of ionic quantities, which will be considered in the model. Depending on the target application, cell models with different levels
of physiological detail can be incorporated, ranging from phenomenological (which reproduce the shape and structure of the action
potential) to physiologically accurate descriptions of the microscopic subcellular dynamics (see a mathematical analysis of a class of
reaction—diffusion systems governing membrane dynamics in, e.g., [40]). Here, we focus on the phenomenological minimal model for
human species, introduced in [21]. This four-field model is capable to accurately recover several physiological and pathological con-
ditions. These include, for instance, resting potential and excitation thresholds, shape-duration of the action potential and restitution
dynamics, CV, and wave break. The kinetics are specified as

lion(v, i) = —itH(v — 01)(v — 01)(vy — V) /75 + (v — vo) (1 = H(v — 62)) /7o + H(v — 02) /130 — H(v — 02)i2i3/ s,
(= HO = 00)) Grios — i0) /757 = Hv = 6 /73t
m(w,i) = | (1=H = 62)) s = 1) /737 = H = B2)1a /5" |,
(1 + tanh (ks (v = v3))) /2= 3) /73 )

where H is the Heaviside function while switches and infinite values are defined as

o o= ((1=HV=07)v) 5y +H(v=067) 75

5 =10+ (15— 1) (T +tanh (k7 (v—v3))) /2,
130 = 1301 + (1302 — 730,1) (1 + tanh (k3o (v — v30))) /2,
(1 =H(v —02))131 + H(v — 02) 732,

((1 = H(v = 60))to1 + H(V — 6o)T0,2,

P 1, v<6
1,inf = 0’ Uzer'

(1 = H = 00))(1 = v/Ta00) + H(V — 0)i3 o -

T3

To

i2inf

All parameter values are specified in Table I.

2.2. Pseudo-ECG representation

Electrocardiogram is the most used device to record the external potential at the torso surface. These data are employed to assess the
properties of the electrical activity in the heart. To recover this signal, one could solve a full heart-torso coupled problem (see, e.g.,
[41,42]), or alternatively, obtain an approximation (which is, of course, less accurate) called pseudo-ECG. Basically, the latter consists
in averaging the potential propagation through the torso recorded at a given electrode e. Let x. denote the position of e at the torso
surface (that s, x. ¢ Q). Assuming that the extra-myocardial matrix and the torso possess an isotropic conductivity ¢ = o, for a given
o > 0,and assuming that impressed density current is o Vv, we can write the following approximation for the shape of the ECG at x,

ECG(xe) :=/ de. (2.2)
a [IX —xel

. ______________________________________________________________________________________________________|
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Table I. Typical values for model and discretization parameters.

Parameters Values

lonic cell model parameters 0o = 0.005, 61 = 0.3, 6, =0.13,0; = 0.1, 13071 = 91, 130, = 0.8, 137 = 2.7342, 13, =4,
01 = 410, 105 = 7, ifog = 0.5,v, = 1.61, 77 = 80, 1, = 1,7 = 1.4506, 737 = 70,
55, =8 1, =280,
ky =200, v;7 = 0.016, 75 = 0.078, k3o = 2.1, v30 = 0.6, k3 = 2.0994, v3 = 0.9087,
T5i = 3.3849, 1300 = 0.01
Monodomain model parameters Cm = 1uF/cm?, x = 1400 cm, of = 0.001 cm?/ms, o5 = 0.0002 cm?/ms
Discretization and pacing parameters € = (0, 1) x(0, 1) x(0,0.0625) cm?, h=0.005cm, At=0.01ms, {=5, §t=5ms, n=2ms

The derivation of (2.2) relies on Ohm’s law, Green’s formula, and the relations between a potential, currents, and a point source [43].
Such an approximation therefore becomes useful to get further information concerning the electrical activity of the heart, specially
when in vivo action potential tissue measurements are not feasible.

2.3.  Dynamics of cardiac alternans

Alternans of APD at the cellular and tissue levels is usually associated with alternans of the T-wave in the ECG signal [44-46], that
is, there exists an alternating variation in the amplitude or shape of the T-wave. With such an expression, it is possible to identify
a condition that rises during fast pacing of the tissue, resulting in a regular and stable alternations of the action potential between
higher-longer and smaller-shorter waves, in time. Although the mechanisms for alternating signals have been theoretically explored in
zero-dimensional settings (see, e.g., [34-36]), only a few experimental and theoretical evidences have been discussed in higher spatial
dimensions [47-52]. Both in-phase (concordant) and out-of-phase (discordant) patterns have been recently shown to arise because of
several different and cumulative effects [53, 541, encompassing:

(i) concordant phases can develop from discordant alternans as the pacing period is decreased;
(ii) multiple stationary nodal lines may exist, as alternans exhibit full three-dimensional dynamics;
(iii) the complex spatio-temporal alternans patterns are very sensitive to both the stimulation site and simulation history. These
evidences indicate the hidden predisposition of such a behavior to chaotic regimes and how little is our understanding of the
phenomenon.

The most adopted alternans analysis is based on the study of the so-called restitution curve of the APD (Section 4). According to one-
dimensional map theory, Nolasco and Dahlen [37] defined a criterion for alternans onset based on the slope of such a curve. In this work,
we make use of such a criterion, but we further analyze the resulting spatio-temporal dynamics by adopting the following definition of
alternans at a generic location in the Cartesian space:

|A APD(x,y,z)o| > n  Alternans

A APD(x,y,2), = APD(X,Y,2)n+1 — APD(X,y,2)n — |AAPD(x,y.2)n| <0 Nodal line

(2.3)

In particular, we compute the difference between two consecutive APDs, at pacing n and n+ 1, thus comparing the absolute difference
with a reference threshold n = 2ms, we distinguish between non alternating (Nodal line) and alternating (Alternans) regions. Such
a procedure allows us to determine the temporal distribution of action potential alternans across the domain. In fact, by plotting the
actual difference A APD(x, y, z), in the mapped field, we can visualize in-phase and out-of-phase regions (Figure 7).

3. Discretization

3.1.  Finite element setting

The spatial domain € is discretized into tetrahedral elements K of diameter hx providing a conforming partition 7, of meshsize h :=
max hi consisting of Nj, vertexes. By P; (K), we denote the space of affine functions defined in K. The classical finite dimensional space
of continuous piecewise linear functions is (see, e.g., [55])

Vi = {vh € C%UQ) : vnlx € P1(K), VK € T},

Nh
i=1

and itis spanned by a set of Lagrangian basis functions {;}
vh € Vh,in € [Vp]* such that foreach t € (0,T)

.The spatial semidiscrete Galerkin formulation for (2.1) consists in finding

Conx ™" /Q8ch(t)thX+LUVVh(t)'VthX‘FX_]/Qlion(vh(t)rih(t))whdxz /QlappthX Ywh € Vh,

/ diin(t) ']th—/ mVu(t),in(t)) -jndx =0  Vjp € [Vp].
Q Q

. ______________________________________________________________________________________________________|
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Let us denote mass and stiffness matrices respectively by M, A, with components

my = Z /’;lﬁk!ﬂ/dX, ay = Z /KUVWk'V‘/f/dX,

KETh KETh

and define the vectors V. = (v);, J = ()j, lion = (lion)js lapp = (lapp)j: j = 1,..., N, where the subindices denote that the quantity
corresponds to the node j of 7;,. Then the semidiscrete FE approximation of the monodomain reaction—diffusion model reads

CmX_1 MBrV — AV + X_1 MIion = Mlapp:
did = m(V, J).

3.2. Finite volume-element formulation

Let 7,* be a dual partition of € into finite volumes (here polygons) K]* centered on each node x;, j = 1,..., Ny of the primal mesh Tj.
Let bk denote the barycenter of a generic element K € 7. Dual elements are constructed by joining the barycenter by of each primal
element K sharing the vertex x;, with the midpoints of the faces intersecting x;. A finite dimensional space associated to piecewise
constant functions defined on this dual mesh is defined as follows:

Vo= {vh € 12(Q) : vyl € P (Kj*),wg.* c Th*},

and a connection between V}, and V;* is defined by the piecewise constant interpolator 7y, : Vi, — V;* (cf, e.g., [32]) specifically defined
by

Np

(v () = Y valx) i) forx e @,

j=1
where y; stands for the characteristic function on the control volume Kj* € T,*. Its vectorial counterpart is denoted by I, : [V,]* —
[V,’f]s ,$ > 1.Letwy € Vi, ji, € [Vi]°. Multiplication of the first and second equations in (2.1) by the test functions mywy, € V¥, T4 j), €
[V,’f]s (respectively), integration by parts over each control volume Kj* € 7,* and summation yields a semidiscrete finite volume method
written in the form

XD (Condevin() + (lon (va(D),in(D) , Tawn) — Y /K . @O 1) mhwids = Y (lapp, tawh),

Kj* 67—,'* Kj* 67;7* K]* 6771*
D" (didn(t) = m (vi(0),in(1)), TTpjn) = O,
K/_*€7—h>(<

for all w, € V4, jn € [Vi]°, and associated to the initial data v,(0) = y,v(0), where y;, : H'(Q) — V;, is a projection defined by the
diffusion operator as follows:

Np
th(xj)/ V(v—ypv)-n =0, Vwy eV,
=1 K"

Using, for example, [31,32], it is possible to reformulate this problem as a Petrov-Galerkin scheme: For t > 0, find (v;,(t),ix(t)) € [Vi]*T'
such that

CmX_1/ 3th(t)thx+/ GVVh(t)'VthX+X_1/ Iion(vh(t)rih(t))ﬂhwhdxz/ LapptnWhdX  Vpwp € Vi,

Q Q Q Q (3.1)
/ deip(t) - thhdx—/ m(vh(2),in(t) - Tpjadx = 0V Mpjp € [Vi] .
Q Q

3.3. Timeintegration and operator splitting

The time interval (0, T) is discretized into N; subintervals of length At = T/N;. We will denote with a superscript n < N; the quantities
associated to a time instant t” = nAt. At each time step, the ionic current lip, at each x € Q is approximated by the so-called ionic
current interpolation (see, e.g., [18]), where the nodal values of the electric current are interpolated linearly onto the quadrature point,
that is,

Np
lion; = Z Iion(ij ij)Wi(X)r

j=1

Copyright © 2014 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2015, 38 1046-1058
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where v;, i; again denote the value of the potential and ionic concentrations at the node i of 7. By doing so, the assembly of the RHS
is very efficient. A further gain in efficiency is obtained with the FVE formulation (3.1), because in that case, we have a ionic current
interpolation of the form

Np
lioni = Y _ lion (¥, i) i (X)- (3.2)
j=1
For sake of both performance and accuracy in recovering the wave front, we split the monodomain equations solving first the pure
reaction part of the cell model consisting on a set of nodal ODEs, followed by the (time-dependent) diffusive step (see, e.g., [41]).
The way that the time derivatives are approximated in each step of this splitting has an important effect on the accuracy of the final
solution. For the reaction, part we employ an explicit Euler scheme for the time integration, whereas the diffusion part of the splitting
is discretized in time with a second order backward differentiation formula (BDF2, see, e.g., [56]). These considerations will be explored
in Section 4. For V", J” known, we compute V"7, J"*1 in three steps, using the intermediate variables V"**, V7 +** 17t** from
CoV"T* = GV — At

ion’

Cm)(_1 Cm)(_1
3M+2A | V> = M (avrt* —yn),
( At + At ( )

CaV™H! = GV — At

on

Here, the vector lion, and the FE mass matrix M are replaced by lion (3.2) and the FVE mass matrix M whenever a FVE scheme is employed.
In addition, we incorporate mass lumping to the algorithm (the mass matrix is substituted by a diagonal approximation). In some
scenarios, this technique could induce numerical artifacts (see the discussion in [57]); however, for the cases studied herein, we found
that it does not affect the accuracy of the numerical approximation, also preserved by the FVE discretization. Energy-based stability
estimates for coupled and splitting-based FE techniques on the bidomain equations can be found in, for example, [58, 59].

3.4. Pseudo-ECG computation

The computation of the ECG signal associated to each electrode (2.2) requires the approximation of the function f, = Av, and its
integral [60]. Writing formally the following weak form of this relation in €2 allows us to employ a low order FE approximation v, of v
(otherwise, vi, should be at least in V2 = {w;, € C° (Q2) : wy|x € P2(K), YK € Ty}, where P,(K) is the space of quadratic polynomials
defined on K):

— / Vv, - Vwpdx = / fawpdx, Ywp, € V. (3.3)
Q Q

Starting from (3.3), if we now assume that f, € Vj, then v, = Z?L vjyjand f, = Z}L fiy;, which entails that computing f, yields the
system

Np Nn

Zﬂ/ le//kdX=—ZVj/ VWj'VWkdX, k=1,...,Nh,

j=1 7% =1 I8
or in matrix form: Find f = (fy, ..., fy,) such that

Mf = AV, (3.4)
where A has elements dy := ZKeTh fK Vi - Virdx. Then, (2.2) is approximated by the quantity

Nn £
ECGh(xe) = ) -

=17

where rj := ||x; — X || is the distance from any mesh point to the electrode (located evidently outside £2).

4. Numerical results

The computational domain consists of a slab of 1 x 1 x 0.0625 cm. The geometry and a series of meshes were generated using the
open source mesh manipulator GMSH [61]. All simulations presented in this section have been implemented in the framework of the
LGPL parallel FE library LifeV (http://www.lifev.org) and run on one to eight nodes of the cluster Bellatrix at the EPF Lausanne (each with
two Sandy Bridge processors running at 2.2 GHz, with eaight cores each, 32 GB of RAM, Infiniband QDR 2 : 1 connectivity, and GPFS
filesystem). All model parameters, unless otherwise specified, are taken as in Table I.

The accuracy of the FE and FVE approximations has been assessed by solving the isotropic monodomain equations with the sim-
pler Rogers—McCulloch kinetics [19], where iqitial and boundary conditions are imposed such that the exact solution is given by
vix,y,z,t) = (1 + 0.001 exp [\/W(x - t)]) . An experimental convergence of O(h) is observed for the transmembrane potential in
the H'-norm for both discretizations (Figure 2 (right), see also [13]). Further code validation has been performed by focusing initially
on the accuracy of the CV under the assumption of tissue isotropy, that is, we put o = o5 = 0.001,cm?/ms. In principle, the mesh-
size should be taken small enough to reproduce the correct CV, also for conductivity values given specifically as in Section 2. We have
solved the monodomain equations for a sequence of refined meshes, and as observed in Figure 2 (left), when h decreases, the CV goes
asymptotically to the physiological value that agrees with [21], and in particular, a meshsize smaller than h = 0.01 cm is needed. We

Copyright © 2014 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2015, 38 1046-1058
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also see that a first order splitting yields too large CV, and moreover, convergence is not attained. On the other hand, we are able to
capture the correct value of CV employing a second order splitting method (Figure 2, right).

Next, we consider the anisotropic case. Fibers and sheetlets directions (fy, so) have been generated analytically as depicted in Figure 1
and were assigned to each vertex of the corresponding mesh. An initial stimulus is applied at one corner of the domain, and we observe
the influence of the pacing location on the shape and speed of propagation of the transmembrane potential. Steep depolarization
wavefronts are typically observed, which require high spatial resolutions. Figure 3 shows the differences between the wave propagation
in two different scenarios. We observe a more significant diffusion of v along the fibers direction. A local CV of 66.3 cm/s has been
obtained in the fibers direction and of 31.4 cm/s in the cross-fibers direction. The ratio between these values is in accordance with the
theoretical one /o /0f given in [62].

We now turn to the analysis of restitution curves, obtained by plotting the APD versus the duration of the previous diastolic interval
(DI). These data are generated via a pacing down protocol (see, e.g., [53]), where starting from a first cycle length (CL), defining a reduc-
tion factor §t and a number of £ stimulations (typically depending on the complexity of the ionic model at hand), we pace £ times at a
fixed CL and then reduce the pacing interval by é6t. This procedure is applied until a fixed minimal CL is reached, where or capture is no
longer possible or fibrillation arises. For each pacing frequency, we record the last two APDs and Dls (if no alternans appear, only the last
values are needed). These values are computed at fixed locations, far enough from the pacing site. In this case, we employ £ = 5 and
8t = 5 ms. The stimuli are applied at a corner of the domain generating spherical waves propagating across the tissue. For the isotropic
case, the data of interest are recorded at several points, far from the stimulus location and in the direction of the propagation (i.e.,
along the diagonal of the xy—plane). For the anisotropic case, the restitution curves and recording locations are depicted in Figure 4.
We observe that irrespective of the location, the shape of the restitution curves is conserved, whereas the stable APD (represented by
the corresponding visible threshold) varies across the domain.

Pseudo-ECG signals have been obtained from solving (3.4). A block-GMRES solver has been used combined with right ML precon-
ditioner with a tolerance of 107'%, a maximum of 200 iterations, and presmoothing with symmetric Gauss-Seidel (see, e.g., [63]). An
Amesos-KLU solver is employed for the coarse level, with an aggregation threshold of 1% [64]. Figure 5 shows pseudo-ECGs correspond-
ing to fixed pacing CL simulations without alternans, performed on a 1D cable, a 2D surface, and the 3D slab. In all cases, a satisfactory

80 =

P
-
70 N o
", \
"' \\ ~
= . =~
65 .. T ~<_
= . a S~ R
= . £ ~ 5w
5 60 . g 3}
5 ° ; —e—2"¢ order splitting £
. 3
55 . (1 —»— 1% order splitting 103
50 .
. N 1074
45 65
0.01 0.02 0.03 0.04 0.05 0.06 1072 10! 107
h (cm) mesh size (cm) N,

Figure 2. Conduction velocity versus meshsize on a cable computed with the minimal model (left), comparison of conduction velocities computed with FE and
first or second order splittings of the minimal model in a 3D slab (middle), and spatial convergence of the FVE and FE approximations of the transmembrane
potential at t = 1 ms, with respect to an exact solution employing Rogers—-McCulloch kinetics (right).

v(z,t)

04 08 12
e o—
0 1.529

Figure 3. FVE approximation of the transmembrane potential at t = 12ms. Here, we focus on the effect of anisotropy and pacing location (arrow) on the
propagation of the action potential at t = 12 ms, pacing from (0,0,0) (left), and pacing from (0,1,0) (right) for the minimal model.
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Figure 5. Pseudo-ECG profiles for the minimal model computed on a cable (left), a square surface (middle) and a 3D slab (right) using a FE (top, solid blue) and a

FVE space discretization (bottom, dashed red).
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Figure 6. Action potential and related pseudo-ECG signal for the minimal model under isotropic conditions (left) along with local restitution data for an effective

cycle length of 420 ms (right).
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Figure 7. FE approximate spatial distribution of AAPD exhibiting discordant alternans at t = 7000 ms and t = 5000 ms (left-top and left-bottom, respectively)
and action potential recordings at different locations obtained by pacing at (0,0,0) (right-top) and (0,1,0) (right-bottom).

qualitative agreement with respect to the expected structure of the signal is observed. In particular, the QRS complex and T-wave are
reproduced according to physiological regimes [41]. The differences between FE and FVE formulations are barely noticeable in this case.

Finally, we describe the dynamics of cardiac alternans as defined in (2.3). It is well known that high pacing frequencies may generate
APD alternans (see, e.g., [53] and references therein). We here employ a so-called quiescent pacing protocol, where from a resting initial
condition, we immediately start pacing at the desired frequency. We observe that a pacing period of 210 ms already induces alternation
of the APD. Only one of two action potentials is kept, and therefore, the effective cycle length is of 420 ms.

Under the assumption of tissue isotropy, we observe an homogeneous spatial distribution for the generated alternans, which are
spatially concordant (Figure 6, left-top). The presence of alternans is also noticed from Figure 6 (right), where the restitution curve
related to this specific CL exhibits a splitting (long-short repetition). As predicted, we observe a correlation between APD alternans and
T-wave alternans (Figure 6, left), and an alternation in the amplitude of the action potential is correlated with alternation of the QRS
complex amplitude in the pseudo-ECG counterpart.

We now take into account the tissue anisotropy and pace from two different locations (0,0,0) and (0,1,0). As in the previous case, only
one out of two action potentials is kept. The resulting spatial distribution of transient alternans is no longer homogeneous and spatially
discordant alternans are observed. In addition, the fibers direction has an important effect in the alternans distribution. From Figure 7,
we see that both the shape of the action potential and the alternans pattern depend on the pacing site too. At the recording locations
A, B, we observe out-of-phase alternans (discordant alternans), whereas at C, we observe a nodal line, though the pacing location is
surrounded by an in-phase alternans pattern.

We also study the presence of spiral waves in the tissue in both isotropic and anisotropic cases using the proposed FVE method.
Because the obtained wavelength is smaller in this case, we employ the Rogers-McCulloch model. As expected, both cases present
perturbed pseudo-ECG signals. In the isotropic case, because the spiral wave does not stabilize, the initial form of the signal can be
easily identified; however, the QRS complex shows some abnormalities, see Figure 8. In the anisotropic case, the spiral wave reaches a
periodic state, and after stabilization, the general form of the signal is completely destroyed. The fact that spiral waves are associated
with tachycardia and fibrillation suggests that the pseudo-ECG reproduces correctly the underlying rhythm disorders.
|
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Figure 8. Snapshots of the FVE approximation of the transmembrane potential at several time instants and pseudo-ECG signal reconstructed with the Rogers—
McCulloch model on isotropic (top) and anisotropic tissue conditions (bottom).

5. Concluding remarks

Alternans patterns, action potential repolarization, and spiral waves breakup are often associated with serious pro-arrhythmic states in
cardiac tissue. Therefore, understanding the nonlinear spatio-temporal mechanisms underlying these phenomena is of crucial impor-
tance for the medical practice. In this paper, we have focused in particular on the development of cardiac alternans exploring a
phenomenological mathematical model fine tuned on cardiac electrophysiological data both on 1D, 2D, and 3D idealized domains.
A careful validation of the code was performed reproducing correct CV and APD shapes and wavelengths (Figure 2). In the three-
dimensional case, fibers rotational anisotropy throughout the thickness of the domain was also considered in the model (Figure 3),
highlighting that the influence of the pacing location is affected by the fibers architecture in the tissue. In particular, two totally differ-
ent action potential waves are generated with a net measurable reduction of the propagation velocity when a pacing site orthogonal
to the fibers direction is employed.

A specific analysis of the APD restitution curves (Figure 4) allows us to emphasize that the onset of the APD-DI heterogeneities are
also due to the presence of fibers in the tissue. Although the shape of the restitution curves is similar at different locations in the domain,
the starting point with a slope greater than 1 arises for different value of APD. Such an observation is also in line with the numerical
quantification of spatial discordant alternans observed in our three-dimensional simulations (Figure 7). The same observation is further
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reinforced through the analysis of the pseudo-ECG signals. In fact, simulations performed on isotropic (1D, 2D, and 3D) domains and
at low pacing frequencies do not show any alternans in the ECG profiles (Figure 5), whereas the same quantities analyzed at higher
pacing frequency clearly discriminate an alternating regime (splitting) both in concordant (Figure 6) and discordant (Figure 7) cases by
varying the T-wave duration and the QRS amplitude. Finally, we analyzed the profiles of the pseudo-ECG signal in the case of a stable
arrhythmia, that is, a single spiral in the tissue (Figure 8). By comparing isotropic and anisotropic three-dimensional slabs, we correctly
observe as the last case results in much more realistic ECG signals, very close to a prefibrillating scenario typical of diseased heart tissues.

In addition, from a numerical perspective, our results suggest that, at least for the minimal model, a second order splitting combined
with mass lumping is an accurate enough choice to recover the correct conduction velocities. However, complex intramural patterns
are also present in the behavior of the potential and its corresponding ECG reconstructions. These aspects deserve further investigation.

Current extensions of this work include the study of excitation-contraction phenomena and the assessment of mechanical alternans
in cardiomyocytes and in the whole muscle using an active strain framework (see, e.g., [65-67]). A further extension toward thermal
and mechanical couplings is also under investigation: in particular, the specific aim is to account for more realistic scenarios in order
to validate recent low energy defibrillating techniques [68-71]. Our mathematical framework is in accordance with other recent works
addressing the problem of spiral pinning and unpinning in biological excitable and deformable tissues, with particular reference to the
heart tissue [68, 72, 73]. Our work represents an extension to these studies, which were typically treating isotropic, two-dimensional
domains with over-simplified phenomenological models.

The approach here proposed, moreover, allows extensions and applications for related problems in biological excitable media, that
is, intestine [74-76] and brain [77, 78] as well as other biochemical systems [79]. The robustness of the pseudo-ECG calculation in
such a complex phenomenon is quite appealing and promising and will be further explored in combination with advanced numerical
techniques of signal analysis. The introduction of innovative and predictive synthetic indicators (see, e.g., [80]) for the clinical practice
will be also carefully considered in a forthcoming contribution.

We also plan to carry out the convergence analysis of FVE formulations for monodomain and bidomain equations following [31]. Fur-
ther improvements of this work, more oriented to numerical methods, may include the assessment of the influence of space adaptivity
in cardiac electrophysiology [4] and electromechanics, and the development of efficient and scalable preconditioners that would allow
an increased performance [17,81].
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