1,219 research outputs found

    Model and visualise the relationship between energy consumption and temperature distribution in cold rooms

    Get PDF
    In the area of food and pharmacy cold storage, temperature distribution is considered as a key factor. Inappropriate distribution of temperature during the cooling process in cold rooms will cause the deterioration of the quality of products and therefore shorten their life-span. In practice, in order to maintain the distribution of temperature at an appropriate level, large amount of electrical energy has to be consumed to cool down the volume of space, based on the reading of a single temperature sensor placed in every cold room. However, it is not clear and visible that what is the change of energy consumption and temperature distribution over time. It lacks of effective tools to visualise such a phenomenon. In this poster, we initially present a solution which combines a visualisation tool with a Computational Fluid Dynamics (CFD) model together to enable users to explore such phenomenon

    First simultaneous observations of flux transfer events at the high-latitude magnetopause by the cluster spacecraft and pulsed radar signatures in the conjugate ionosphere by the CUTLASS and EISCAT radars

    Get PDF
    Cluster magnetic field data are studied during an outbound pass through the post-noon high-latitude magnetopause region on 14 February 2001. The onset of several minute perturbations in the magnetospheric field was observed in conjunction with a southward turn of the interplanetary magnetic field observed upstream by the ACE spacecraft and lagged to the subsolar magnetopause. These perturbations culminated in the observation of four clear magnetospheric flux transfer events (FTEs) adjacent to the magnetopause, together with a highly-structured magnetopause boundary layer containing related field features. Furthermore, clear FTEs were observed later in the magnetosheath. The magnetospheric FTEs were of essentially the same form as the original “flux erosion events” observed in HEOS-2 data at a similar location and under similar interplanetary conditions by Haerendel et al. (1978). We show that the nature of the magnetic perturbations in these events is consistent with the formation of open flux tubes connected to the northern polar ionosphere via pulsed reconnection in the dusk sector magnetopause. The magnetic footprint of the Cluster spacecraft during the boundary passage is shown to map centrally within the fields-of-view of the CUTLASS SuperDARN radars, and to pass across the field-aligned beam of the EISCAT Svalbard radar (ESR) system. It is shown that both the ionospheric flow and the backscatter power in the CUTLASS data pulse are in synchrony with the magnetospheric FTEs and boundary layer structures at the latitude of the Cluster footprint. These flow and power features are subsequently found to propagate poleward, forming classic “pulsed ionospheric flow” and “poleward-moving radar auroral form” structures at higher latitudes. The combined Cluster-CUTLASS observations thus represent a direct demonstration of the coupling of momentum and energy into the magnetosphere-ionosphere system via pulsed magnetopause reconnection. The ESR observations also reveal the nature of the structured and variable polar ionosphere produced by the structured and time-varying precipitation and flow

    Currents associated with Saturn's intra-D ring azimuthal field perturbations

    Get PDF
    During the final 22 full revolutions of the Cassini mission in 2017, the spacecraft passed at periapsis near the noon meridian through the gap between the inner edge of Saturn’s D ring and the denser layers of the planet’s atmosphere, revealing the presence of an unanticipated low-latitude current system via the associated azimuthal perturbation field peaking typically at ~10-30 nT. Assuming approximate axisymmetry, here we use the field data to calculate the associated horizontal meridional currents flowing in the ionosphere at the feet of the field lines traversed, together with the exterior field-aligned currents required by current continuity. We show that the ionospheric currents are typically~0.5–1.5 MA per radian of azimuth, similar to auroral region currents, while the field-aligned current densities above the ionosphere are typically ~5-10 nA m-2 , more than an order less than auroral values. The principal factor involved in this difference is the ionospheric areas into which the currents map. While around a third of passes exhibit unidirectional currents flowing northward in the ionosphere closing southward along exterior field lines, many passes also display layers of reversed northward field-aligned current of comparable or larger magnitude in the region interior to the D ring, which may reverse sign again on the innermost field lines traversed. Overall, however, the currents generally show a high degree of north-south conjugacy indicative of an interhemispheric system, certainly on the larger overall spatial scales involved, if less so for the smaller-scale structures, possibly due to rapid temporal or local time variations

    Understanding the evolution of native pinewoods in Scotland will benefit their future management and conservation

    Get PDF
    Scots pine (Pinus sylvestris L.) is a foundation species in Scottish highland forests and a national icon. Due to heavy exploitation, the current native pinewood coverage represents a small fraction of the postglacial maximum. To reverse this decline, various schemes have been initiated to promote planting of new and expansion of old pinewoods. This includes the designation of seed zones for control of the remaining genetic resources. The zoning was based mainly on biochemical similarity among pinewoods but, by definition, neutral molecular markers do not reflect local phenotypic adaptation. Environmental variation within Scotland is substantial and it is not yet clear to what extent this has shaped patterns of adaptive differentiation among Scottish populations. Systematic, rangewide common-environment trials can provide insights into the evolution of the native pinewoods, indicating how environment has influenced phenotypic variation and how variation is maintained. Careful design of such experiments can also provide data on the history and connectivity among populations, by molecular marker analysis. Together, phenotypic and molecular datasets from such trials can provide a robust basis for refining seed transfer guidelines for Scots pine in Scotland and should form the scientific basis for conservation action on this nationally important habitat
    corecore