18 research outputs found

    The Pseudouridine Synthase RPUSD4 Is an Essential Component of Mitochondrial RNA Granules

    Get PDF
    Mitochondrial gene expression is a fundamental process that is largely dependent on nuclear-encoded proteins. Several steps of mitochondrial RNA processing and maturation, including RNA post-transcriptional modification, appear to be spatially organized into distinct foci, which we have previously termed mitochondrial RNA granules (MRGs). Although an increasing number of proteins have been localized to MRGs, a comprehensive analysis of the proteome of these structures is still lacking. Here, we have applied a microscopy-based approach that has allowed us to identify novel components of the MRG proteome. Among these, we have focused our attention on RPUSD4, an uncharacterized mitochondrial putative pseudouridine synthase. We show that RPUSD4 depletion leads to a severe reduction of the steady-state level of the 16S mitochondrial (mt) rRNA with defects in the biogenesis of the mitoribosome large subunit and consequently in mitochondrial translation. We report that RPUSD4 binds 16S mt-rRNA, mt-tRNA(Met), and mt-tRNA(Phe), and we demonstrate that it is responsible for pseudouridylation of the latter. These data provide new insights into the relevance of RNA pseudouridylation in mitochondrial gene expression.This work was supported by the Swiss National Science Foundation Grant SNF310030B_160257/1, Wellcome Trust Grant 096919/Z/11/Z, and core funding of Medical Research Council, UK

    Genome-Wide Analysis of Host mRNA Translation during Hepatitis C Virus Infection

    No full text
    International audienceIn the model of Huh-7.5.1 hepatocyte cells infected by the JFH1 hepatitis C virus (HCV) strain, transcriptomic and proteomic studies have revealed modulations of pathways governing mainly apoptosis and cell cycling. Differences between transcriptomic and proteomic studies pointed to regulations occurring at the posttranscriptional level, including the control of mRNA translation. In this study, we investigated at the genome-wide level the translational regulation occurring during HCV infection. Sucrose gradient ultracentrifugation followed by microarray analysis was used to identify translationally regulated mRNAs (mRNAs associated with ribosomes) from JFH1-infected and uninfected Huh-7.5.1 cells. Translationally regulated mRNAs were found to correspond to genes enriched in specific pathways, including vesicular transport and posttranscriptional regulation. Interestingly, the strongest translational regulation was found for mRNAs encoding proteins involved in pre-mRNA splicing, mRNA translation, and protein folding. Strikingly, these pathways were not previously identified, through transcriptomic studies, as being modulated following HCV infection. Importantly, the observed changes in host mRNA translation were directly due to HCV replication rather than to HCV entry, since they were not observed in JFH1-infected Huh-7.5.1 cells treated with a potent HCV NS3 protease inhibitor. Overall, this study highlights the need to consider, beyond transcriptomic or proteomic studies, the modulation of host mRNA translation as an important aspect of HCV infection

    Intravoxel incoherent motion diffusion-weighted imaging in the liver: comparison of mono-, bi- and tri-exponential modelling at 3.0-T.

    No full text
    PURPOSE: To determine whether a mono-, bi- or tri-exponential model best fits the intravoxel incoherent motion (IVIM) diffusion-weighted imaging (DWI) signal of normal livers. MATERIALS AND METHODS: The pilot and validation studies were conducted in 38 and 36 patients with normal livers, respectively. The DWI sequence was performed using single-shot echoplanar imaging with 11 (pilot study) and 16 (validation study) b values. In each study, data from all patients were used to model the IVIM signal of normal liver. Diffusion coefficients (Di ± standard deviations) and their fractions (fi ± standard deviations) were determined from each model. The models were compared using the extra sum-of-squares test and information criteria. RESULTS: The tri-exponential model provided a better fit than both the bi- and mono-exponential models. The tri-exponential IVIM model determined three diffusion compartments: a slow (D1 = 1.35 ± 0.03 × 10(-3) mm(2)/s; f1 = 72.7 ± 0.9 %), a fast (D2 = 26.50 ± 2.49 × 10(-3) mm(2)/s; f2 = 13.7 ± 0.6 %) and a very fast (D3 = 404.00 ± 43.7 × 10(-3) mm(2)/s; f3 = 13.5 ± 0.8 %) diffusion compartment [results from the validation study]. The very fast compartment contributed to the IVIM signal only for b values ≤15 s/mm(2) CONCLUSION: The tri-exponential model provided the best fit for IVIM signal decay in the liver over the 0-800 s/mm(2) range. In IVIM analysis of normal liver, a third very fast (pseudo)diffusion component might be relevant. KEY POINTS: ? For normal liver, tri-exponential IVIM model might be superior to bi-exponential ? A very fast compartment (D = 404.00 ± 43.7 × 10 (-3)  mm (2) /s; f = 13.5 ± 0.8 %) is determined from the tri-exponential model ? The compartment contributes to the IVIM signal only for b ≤ 15 s/mm (2.

    Lethal Poisoning of Cancer Cells by Respiratory Chain Inhibition plus Dimethyl α-Ketoglutarate

    No full text
    Sica et al. show that respiratory chain inhibition by 1-cyclopropyl-4-(4-[(5-methyl-3-(3-[4-(trifluoromethoxy)phenyl]-1,2,4-oxadiazol-5-yl)-1H-pyrazol-1-yl)methyl]pyridin-2-yl)piperazine (BAY87-2243, abbreviated as B87) becomes lethal for cancer cells when glycolysis is simultaneously suppressed. When combined with B87, dimethyl α-ketoglutarate acquires the capacity to suppress glycolysis, thus lethally poisoning bioenergetics metabolism. This therapeutic combination effect relies on transcriptional reprogramming that can be reverted by pharmacological inhibition of MDM2

    Cardiolipin or MTCH2 can serve as tBID receptors during apoptosis

    No full text
    During apoptosis, proapoptotic BAX and BAK trigger mitochondrial outer membrane (MOM) permeabilization by a mechanism that is not yet fully understood. BH3-only proteins such as tBID, together with lipids of the MOM, are thought to play a key role in BAX and BAK activation. In particular, cardiolipin (CL) has been shown to stimulate tBID-induced BAX activation in vitro. However, it is still unclear whether this process also relies on CL in the cell, or whether it is more dependent on MTCH2, a proposed receptor for tBID present in the MOM. To address this issue, we deleted both alleles of cardiolipin synthase in human HCT116 cells by homologous recombination, which resulted in a complete absence of CL. The CL-deficient cells were fully viable in glucose but displayed impaired oxidative phosphorylation and an inability to grow in galactose. Using these cells, we found that CL was not required for either tBID-induced BAX activation, or for apoptosis in response to treatment with TRAIL. Downregulation of MTCH2 in HCT116 cells also failed to prevent recruitment of tBID to mitochondria in apoptotic conditions. However, when both CL and MTCH2 were depleted, a significant reduction in tBID recruitment was observed, suggesting that in HCT116 cells, CL and MTCH2 can have redundant functions in this process
    corecore