340 research outputs found

    Emergency surgery for splenic flexure cancer: results of the SFC Study Group database

    Get PDF
    Background: The effectiveness of surgical treatment for splenic flexure carcinomas (SFCs) in emergency settings remains unexplored. This study aims to compare the perioperative and long-term outcomes of different alternatives for emergency SFC resection. Method: This multicenter retrospective study was based on the SFC Study Group database. For the present analysis, SFC patients were selected if they had received emergency surgical resection with curative intent between 2000 and 2018. Extended right colectomy (ERC), left colectomy (LC), and segmental left colectomy (SLC) were evaluated and compared. Results: The study sample was composed of 90 SFC patients who underwent emergency ERC (n = 55, 61.1%), LC (n = 18, 20%), or SLC (n = 17, 18.9%). Bowel obstruction was the most frequent indication for surgery (n = 75, 83.3%), and an open approach was chosen in 81.1% of the patients. A higher incidence of postoperative complications was observed in the ERC group (70.9%) than in the LC (44.4%) and SLC groups (47.1%), with a significant procedure-related difference for severe postoperative complications (Dindo-Clavien ≥ III; adjusted odds ratio for ERC vs. LC:7.23; 95% CI 1.51-34.66; p = 0.013). Anastomotic leakage occurred in 8 (11.2%) patients, with no differences between the groups (p = 0.902). R0 resection was achieved in 98.9% of the procedures, and ≥ 12 lymph nodes were retrieved in 92.2% of patients. Overall and disease-free survival rates at 5 years were similar between the groups and were significantly associated with stage pT4 and the presence of synchronous metastases. Conclusion: In the emergency setting, ERC and open surgery are the most frequently performed procedures. ERC is associated with increased odds of severe postoperative complications when compared to more conservative SFC resections. Nonetheless, all the alternatives seem to provide similar pathologic and long-term outcomes, supporting the oncological safety of more conservative resections for emergency SFCs

    Brain-Derived Neurotrophic Factor Gene Val66Met Polymorphism Modulates Reversible Cerebral Vasoconstriction Syndromes

    Get PDF
    BACKGROUND: Reversible cerebral vasoconstriction syndrome (RCVS) could be complicated by cerebral ischemic events. Hypothetical mechanisms of RCVS involve endothelial dysfunction and sympathetic overactivity, both of which were reported to be related to brain-derived neurotrophic factor (BDNF). The study investigated the association between functional BDNF Val66Met polymorphism and RCVS. METHODS: Patients with RCVS and controls were prospectively recruited and genotyped for the BDNF Val66Met polymorphism. Magnetic resonance angiography (MRA) and transcranial color-coded Doppler sonography were employed to evaluate cerebral vasoconstriction. Genotyping results, clinical parameters, vasoconstriction scores, mean flow velocities of the middle cerebral artery (V(MCA)), and Lindegaard indices were analyzed. Split-sample approach was employed to internally validate the data. PRINCIPAL FINDINGS: Ninety Taiwanese patients with RCVS and 180 age- and gender-matched normal controls of the same ethnicity completed the study. The genotype frequencies did not differ between patients and controls. Compared to patients with Met/Met homozygosity, patients with Val allele had higher mean vasoconstriction scores of all arterial segments (1.60±0.72 vs. 0.87±0.39, p<0.001), V(MCA) values (116.7±36.2 vs. 82.7±17.9 cm/s, p<0.001), and LI (2.41±0.91 vs. 1.89±0.41, p = 0.001). None of the Met/Met homozygotes, but 38.9% of the Val carriers, had V(MCA) values of >120 cm/s (p<0.001). Split-sample validation by randomization, age, entry time or residence of patients demonstrated concordant findings. CONCLUSIONS: Our findings link BDNF Val66Met polymorphism with the severity of RCVS for the first time and implicate possible pathogenic mechanisms for vasoconstriction in RCVS

    Regulation of the Na,K-ATPase Gamma-Subunit FXYD2 by Runx1 and Ret Signaling in Normal and Injured Non-Peptidergic Nociceptive Sensory Neurons

    Get PDF
    Dorsal root ganglia (DRGs) contain the cell bodies of sensory neurons which relay nociceptive, thermoceptive, mechanoceptive and proprioceptive information from peripheral tissues toward the central nervous system. These neurons establish constant communication with their targets which insures correct maturation and functioning of the somato-sensory nervous system. Interfering with this two-way communication leads to cellular, electrophysiological and molecular modifications that can eventually cause neuropathic conditions. In this study we reveal that FXYD2, which encodes the gamma-subunit of the Na,K-ATPase reported so far to be mainly expressed in the kidney, is induced in the mouse DRGs at postnatal stages where it is restricted specifically to the TrkB-expressing mechanoceptive and Ret-positive/IB4-binding non-peptidergic nociceptive neurons. In non-peptidergic nociceptors, we show that the transcription factor Runx1 controls FXYD2 expression during the maturation of the somato-sensory system, partly through regulation of the tyrosine kinase receptor Ret. Moreover, Ret signaling maintains FXYD2 expression in adults as demonstrated by the axotomy-induced down-regulation of the gene that can be reverted by in vivo delivery of GDNF family ligands. Altogether, these results establish FXYD2 as a specific marker of defined sensory neuron subtypes and a new target of the Ret signaling pathway during normal maturation of the non-peptidergic nociceptive neurons and after sciatic nerve injury

    Oxidative stress homeostasis in grapevine (Vitis vinifera L.)

    Get PDF
    Plants can maintain growth and reproductive success by sensing changes in the environment and reacting through mechanisms at molecular, cellular, physiological, and developmental levels. Each stress condition prompts a unique response although some overlap between the reactions to abiotic stress (drought, heat, cold, salt or high light) and to biotic stress (pathogens) does occur. A common feature in the response to all stresses is the onset of oxidative stress, through the production of reactive oxygen species (ROS). As hydrogen peroxide and superoxide are involved in stress signaling, a tight control in ROS homeostasis requires a delicate balance of systems involved in their generation and degradation. If the plant lacks the capacity to generate scavenging potential, this can ultimately lead to death. In grapevine, antioxidant homeostasis can be considered at whole plant levels and during the development cycle. The most striking example lies in berries and their derivatives, such as wine, with nutraceutical properties associated with their antioxidant capacity. Antioxidant homeostasis is tightly regulated in leaves, assuring a positive balance between photosynthesis and respiration, explaining the tolerance of many grapevine varieties to extreme environments. In this review we will focus on antioxidant metabolites, antioxidant enzymes, transcriptional regulation and cross-talk with hormones prompted by abiotic stress conditions. We will also discuss three situations that require specific homeostasis balance: biotic stress, the oxidative burst in berries at veraison and in vitro systems. The genetic plasticity of the antioxidant homeostasis response put in evidence by the different levels of tolerance to stress presented by grapevine varieties will be addressed. The gathered information is relevant to foster varietal adaptation to impending climate changes, to assist breeders in choosing the more adapted varieties and suitable viticulture practice

    Identification of molecular pathways affected by pterostilbene, a natural dimethylether analog of resveratrol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pterostilbene, a naturally occurring phenolic compound produced by agronomically important plant genera such as <it>Vitis </it>and <it>Vacciunium</it>, is a phytoalexin exhibiting potent antifungal activity. Additionally, recent studies have demonstrated several important pharmacological properties associated with pterostilbene. Despite this, a systematic study of the effects of pterostilbene on eukaryotic cells at the molecular level has not been previously reported. Thus, the aim of the present study was to identify the cellular pathways affected by pterostilbene by performing transcript profiling studies, employing the model yeast <it>Saccharomyces cerevisiae</it>.</p> <p>Methods</p> <p><it>S. cerevisiae </it>strain S288C was exposed to pterostilbene at the IC<sub>50 </sub>concentration (70 μM) for one generation (3 h). Transcript profiling experiments were performed on three biological replicate samples using the Affymetrix GeneChip Yeast Genome S98 Array. The data were analyzed using the statistical methods available in the GeneSifter microarray data analysis system. To validate the results, eleven differentially expressed genes were further examined by quantitative real-time RT-PCR, and <it>S. cerevisiae </it>mutant strains with deletions in these genes were analyzed for altered sensitivity to pterostilbene.</p> <p>Results</p> <p>Transcript profiling studies revealed that pterostilbene exposure significantly down-regulated the expression of genes involved in methionine metabolism, while the expression of genes involved in mitochondrial functions, drug detoxification, and transcription factor activity were significantly up-regulated. Additional analyses revealed that a large number of genes involved in lipid metabolism were also affected by pterostilbene treatment.</p> <p>Conclusion</p> <p>Using transcript profiling, we have identified the cellular pathways targeted by pterostilbene, an analog of resveratrol. The observed response in lipid metabolism genes is consistent with its known hypolipidemic properties, and the induction of mitochondrial genes is consistent with its demonstrated role in apoptosis in human cancer cell lines. Furthermore, our data show that pterostilbene has a significant effect on methionine metabolism, a previously unreported effect for this compound.</p

    Intranasal “painless” Human Nerve Growth Factors Slows Amyloid Neurodegeneration and Prevents Memory Deficits in App X PS1 Mice

    Get PDF
    Nerve Growth Factor (NGF) is being considered as a therapeutic candidate for Alzheimer's disease (AD) treatment but the clinical application is hindered by its potent pro-nociceptive activity. Thus, to reduce systemic exposure that would induce pain, in recent clinical studies NGF was administered through an invasive intracerebral gene-therapy approach. Our group demonstrated the feasibility of a non-invasive intranasal delivery of NGF in a mouse model of neurodegeneration. NGF therapeutic window could be further increased if its nociceptive effects could be avoided altogether. In this study we exploit forms of NGF, mutated at residue R100, inspired by the human genetic disease HSAN V (Hereditary Sensory Autonomic Neuropathy Type V), which would allow increasing the dose of NGF without triggering pain. We show that “painless” hNGF displays full neurotrophic and anti-amyloidogenic activities in neuronal cultures, and a reduced nociceptive activity in vivo. When administered intranasally to APPxPS1 mice ( n = 8), hNGFP61S/R100E prevents the progress of neurodegeneration and of behavioral deficits. These results demonstrate the in vivo neuroprotective and anti-amyloidogenic properties of hNGFR100 mutants and provide a rational basis for the development of “painless” hNGF variants as a new generation of therapeutics for neurodegenerative diseases
    corecore