14 research outputs found

    On the performance of concentrating fluid-based spectral-splitting hybrid PV-thermal (PV-T) solar collectors

    Get PDF
    Concentrating fluid-based spectral-splitting hybrid PV-thermal (SSPVT) collectors are capable of high electrical and thermal efficiencies, as well as high-temperature thermal outputs. However, the optimal optical filter and the maximum potential of such collectors remain unclear. In this study, we develop a comprehensive two-dimensional model of a fluid-based SSPVT collector. The temperature distributions reveal that these designs are effective in thermally decoupling the PV module from the high-temperature filter flow-channel, improving the electrical performance of the module. For a Si solar cell-based SSPVT collector with optical filter #Si400-1100, the filter channel is able to produce high-temperature thermal energy (400 °C) with an efficiency of 19.5%, low-temperature thermal energy (70 °C) with an efficiency of 49.5%, and electricity with an efficiency 17.5%. Of note is that the relative fraction of high-temperature thermal energy, low-temperature thermal energy and electricity generated by such a SSPVT collector can be adjusted by shifting the upper- and lower-bound cut-off wavelengths of the optical filter, which are found to strongly affect the spectral and energy distributions through the collector. The optimal upper-bound cut-off always equals the bandgap wavelength of the solar cell material (e.g., 1100 nm for Si, and 850 nm for CdTe), while the optimal lower-bound cut-off follows more complex selection criteria. The SSPVT collector with the optimal filter has a significantly higher total effective efficiency than an equivalent conventional solar-thermal collector when the relative value of the high-temperature heat to that of electricity is lower than 0.5. Detailed guidance for selecting optimal filters and their role in controlling SSPVT collector performance under different conditions is provided

    Large eddy simulation of particle aggregation in turbulent jets

    No full text
    Aggregation is an inter-particle process that involves a multitude of different physical and chemical mechanisms. Aggregation processes often occur within turbulent flows; for example in spray drying, soot formation, or nanoparticle formation. When the concentration of particles is very large, a direct simulation of individual particles is not possible and alternative approaches are needed. The present work follows the stochastic aggregation modelling based on a Lagrangian framework by Pesmazoglou, Kempf, and Navarro-Martinez (2016) and implements it in the Large Eddy Simulation context. The new coupled model is used to investigate particle aggregation in turbulent jets. Two cases are considered: an existent Direct Numerical Simulation of nanoparticle agglomeration in a planar jet and an experimental configuration of nanoparticles in a round jet. The results show a good agreement in both cases, demonstrating the advantages of the Lagrangian framework to model agglomeration and it capacity to describe the full particle size distribution

    Droplet homogeneous nucleation in a turbulent vapour jet in the two-way coupling regime

    No full text
    Homogeneous nucleation of liquid droplets in hot vapour stream, mixing with a cooler and dry external environment, occurs in many technological applications, ranging from the generation of filter test particles to the control of fugitive emissions from industrial sources (refineries), up to the young discipline of Particle Engineering in the biotech industries. However, a Direct Numerical Simulation (DNS) of a vapour jet is still missing, despite the multitude of experiments and its relevance for applications, which could benefit from a better understanding of such multi-physics turbulent flows. Classical Nucleation Theory (CNT) prescribes rates and critical diameters at which droplets nucleate, depending on the local thermodynamical state. Because of the strongly nonlinear interplay between homogeneous nucleation and turbulent fluctuations, it is crucial not only to take into account all the relevant scales of turbulence, but even all the cross-coupling phenomena involved. DNS allows to capture, without any modelling, the turbulence underlying the carrier phase dynamics. In the two-way coupling regime, the disperse phase back- reaction is then accounted within the point-particle approach. The relevance of these effects on the whole process of the phase-change, i.e. droplets nucleation, condensation and evaporation, will be discussed. In particular, it will be pointed out how much the droplets back-reaction, on the thermodynamics (especially due to the phase-change), does affect the subsequent droplets nucleation rate
    corecore