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Abstract

This work presents a model for particle nucleation and transport in the con-

text of Large Eddy Simulation. A turbulent Dibutyl-Phthalate-laden Nitro-

gen jet diffusing in atmospheric air is used for validation. The proposed nucle-

ation model treats the process in a probabilistic manner where the frequency

of events is determined from local equilibrium conditions. Two methodologies

for the sub-grid influence on nucleation rates are implemented: the presumed

β-PDF and the source expansion method. Good agreement is found with re-

spect to the experimental results for particle concentrations. The differences

between using mean and instantaneous values used for the evaluation of the

nucleation rate are shown. For the grid spacing used, the unresolved scales

seem to have little influence on the calculated particle concentrations. It is
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concluded that the use of instantaneous nucleation rates is advantageous and

therefore it is important to consider a particle coupling that allows for the

full use of instantaneous values.
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1. Introduction

Uniform phase processes may reach a supersaturated state which suddenly

collapses due to a phase transition of the supersaturated vapour to an aerosol.

This process is termed nucleation and it involves the use of either a nucleus

composed of vapour molecules of the same material, or an exogenous (to

the vapour) surface such as an ionic cluster, an impurity on the surrounding

enclosure (e.g. bubbles formed at the surface of a glass of sparkling water),

or a small particle of a different material (e.g. dust particles).

Nucleation is the driving process in a number of industrial and atmo-

spheric applications, such as soot formation in combustion processes and

fugitive emissions from industrial sources [1], nano-particle synthesis [2, 3],

and crystal precipitation in liquid phase reactors, among others. All these

processes highly depend on nucleation rates [4]. A correct description of

nucleation and growth processes may lead to a successful retrieval of the

Particle Size Distribution (PSD). The ability to influence or control the PSD

is a very useful tool for generating filter test particles [5] or for preventing

health-related effects of newly formed particles [6].

Homogeneous nucleation describes the process whereby one or more gases

condense without the aid of an exogenous surface to form particles. For ho-

mogeneous nucleation to occur, the vapour must first reach a supersaturated
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state. Thereafter, a small ‘embryo’ must form that will allow additional

vapour molecules to attach and cause the embryo to grow. Nucleation em-

bryos are continuously formed and disintegrated by random processes; de-

pending on the local thermodynamic conditions, a stable nucleus might form

and grow to become a particle [7].

Any first order phase transition requires the surmounting of an energy

barrier. A fluctuation in temperature, pressure, or concentration modifies

the activation energy and therefore locally modifies the rate of phase transi-

tion. This process makes nucleation rates extremely sensitive to variations in

local thermodynamic properties [8]. This non-linearity is the primary chal-

lenge and incentive for the examination of nucleation events and there is an

increasing effort in exploring the phenomenon.

Direct measurement of nucleation rates is difficult in non-stationary envi-

ronments. Although there are a number of ways to retrieve the PSD and con-

centration densities (e.g. with the use of a Condensation Particle Counter),

the rate of particle formation at an exact location cannot be measured di-

rectly. This occurs because at any position of the domain, the measured

instantaneous concentration includes particles that nucleated upstream and

were subsequently transported to that location. A deeper understanding of

the nucleation process therefore requires a close examination of experimental

data along with rigorous computational modelling. Early investigations of

turbulent-coupled nucleation were almost exclusively theoretical or experi-

mental. A description of species concentration, temperature, and velocity

fluctuations was limited; nucleation rates were therefore rendered unreliable

[9]. With the recent advance in computational power various approaches have
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been introduced for the coupling of the particulate phase evolution with a

turbulent flow.

For the investigation of a turbulent-flow-coupled nucleation rate, In the

present work, a supersaturated Dibutyl-Phthalate (DBP)-laden Nitrogen (N2)

turbulent jet is investigated [10]. DBP is a stable compound with low toxicity,

and it can be considered representative of a heavy organic fugitive emission.

DBP has been favored in nucleation studies, [11, 12, 13, 14, 15, 16] among

others, because it can reach high supersaturations with low concentrations.

The turbulent jet studied is a configuration with many practical applica-

tions in industry, ranging from prototype small-scale injectors to industrial

chimneys. Furthermore there is a significant amount of literature for its par-

ticular flow characteristics, as well as self-similar solutions for the velocities

and passive scalar distributions [17, 18, 19]. The experimental test case of

Lesniewski and Friedlander [10, 20, 21] was selected. This particular case has

been examined in a number of computational studies [4, 22, 9], allowing for

further comparison of data and implementation methods.

The aims of this work are: firstly, to propose an implementation of the

nucleation theory in the context of a Large Eddy Simulation (LES); and

secondly, to investigate the significance of the sub-grid scale contributions on

homogeneous nucleation rates. The main advantages of LES are its abilities

to provide instantaneous values of the field and to directly resolve the most

energetic eddies without a closure model. Retrieving instantaneous data can

be very important due to the non-linearity of the nucleation rate.

The following sections summarize the experimental set up and physical

characteristics of the test case. Thereafter, the methodology is presented for
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the particle transport and for the various treatments of homogeneous nu-

cleation. The coupling of a non-equilibrium flow to the nucleation rate is

investigated and the present method is compared to approaches from rele-

vant literature. Having established the numerical treatment, the results and

conclusions are presented.

2. Experimental Configuration

Lesniewski and Friedlander [10, 20, 21] used a turbulent diffusion chamber

to conduct a series of experiments and measure particle concentrations and

size distributions for a DBP-laden Nitrogen jet diffusing in atmospheric air.

The Nitrogen stream was heated and passed through a bubbler where it was

saturated with DBP at a saturation temperature assumed to be equal to the

temperature of the bubbler. The DBP-laden gas was then passed through a

filter to remove particles from the carrier phase and sent with high velocity

into a chamber via an insulated nozzle with an inner diameter Djet and outer

diameter Dins. An air co-flow entered concentrically into the chamber. An

outline of the diffusion chamber is shown in Fig. 1.

The jet was turbulent and subsonic, with velocities varying from 30 to

80 m/s. In this work a jet bulk velocity of Ujet = 51.5 m/s was chosen

with a co-flow velocity of Ucf = 0.18 m/s. The pressure was held constant

at approximately atmospheric conditions. The jet inlet temperature was

measured experimentally using a thermocouple under the nozzle exit and

was held at 413 K, while the co-flow air temperature was 299 K.

For a nozzle volumetric flow-rate of Qjet = 10 lpm the jet engulfed the

domain at Zd/Djet ≈ 90, where Zd is the axial distance. The nozzle diameter
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Figure 1: Experimental configuration of [10]. The heated N2 DBP-laden jet enters through

an insulated nozzle in the diffusion chamber. A concentric flow of air at atmospheric

conditions is added. Nucleated particles are sampled and counted using a probe positioned

at a number of axial locations leading though a tube to the Condensation Particle Counter

(CPC).
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in the experiment was varied. In the context of this work a nozzle diameter

of Djet = 2.35 mm and an insulator diameter Dins = 27 mm were chosen;

see Fig. 1. No recirculation was observed near the nozzle outlet in [10].

The experimental chamber had a diameter of 150 mm and 460 mm length.

The simulated domain had dimensions 50 × 50 × 100 mm, with a second

simulation performed in a domain of 50 × 50 × 200 mm to compare the

particle concentration axial trend with the experimental data.

Measurements of the particle concentrations were taken using a sampling

probe positioned in various axial locations. According to Lesniewski and

Friedlander [10], the probe did not affect the upstream flow conditions. Once

a sample was extracted, it was passed via a stainless steel tube to a Conden-

sation Particle Counter (CPC). The residence time in the tube was 0.3 s; the

sample was diluted to prevent further growth of the particles and heated to

quench further nucleation. Measurements were taken after the CPC had a

steady output for 30 s. The initial DBP mole fraction was measured using a

flame ionization detector (FID) and was varied from 1− 5× 10−4 in different

experimental runs. In this study an initial mole fraction of 3.8 × 10−4 was

used. Both the FID and CPC data had a ±10% random error [10].

3. Methodology

3.1. Continuous Phase

The simulation treats the continuous phase in an Eulerian LES using

the in-house incompressible PsiPhi code [23, 24]. For the purpose of the

simulation a Lewis number Le = 1 was assumed. It must be noted that

for DBP-laden Nitrogen Le ≈ 5 [25] and therefore fluid is cooled faster
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than it is diluted, creating a difference in nucleation rates at in laminar

regions. At high Reynolds numbers, molecular effects of temperature on fluid

properties can be considered negligible when compared to turbulent-driven

diffusion, although high Lewis number effects on nucleation may exist. The

assumption of unity Lewis number in the present configuration allows for

a direct comparison with the methodologies used in similar computational

studies [4, 22, 9] .

The condensed vapour was only a small fraction of the total concentration

[10], therefore DBP depletion due to nucleation was considered negligible.

The unknown sub grid-scale stresses of the momentum equation are closed

using the Smagorinsky eddy-viscosity model [26] with the model constant of

Cs = 0.173 suggested by Lilly [27]. A Central Differencing Scheme second-

order accurate in space is used for the convective momentum fluxes, a Total

Variation Diminishing scheme (TVD) for the convective scalar fluxes, and a

third-order Runge-Kutta Scheme is used for integration in time. The time-

step width is set according to the Courant-Friedrichs-Lewy (CFL) condition

[28], with a constant of CFL = 0.3. The code uses implicit filtering with

equally sized cubic cells, thus ensuring good numerical accuracy and efficient

parallelization. A grid-spacing of ∆ = 0.25 mm is found to sufficiently resolve

the jet evolution, which corresponds to roughly 10 points across the jet diam-

eter. Pseudo-turbulence, with a prescribed rms velocity of 10% the jet bulk

velocity and an integral length-scales of half the jet diameter is created by

Klein’s inflow generator [29, 30]. The computational time is approximately

15000 CPU hours per simulation.
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3.2. Particle Transport

All nucleated particles were assumed spherical with a diameter equivalent

to the critical nucleation diameter d∗p. Itô’s equivalent Stochastic Differen-

tial Equation (SDE) for stochastic particles is solved following the proposed

solution of Jones et al. [31, 32, 33] and implemented in previous work [34] .

The particle motion is governed by the Lagrangian equations (1) and (2): the

position xp of the pth particle is obtained by the integration of (1) in time,

while the incremental change of velocity vp of the particle is obtained by (2).

The ensemble average of all particle paths gives the Eulerian equivalent of

the positions and velocities of the particles.

dxp = vpdt (1)

dvp =
(Ũf − vp)

τp
dt+

√
Co
kSGS
τt

dW (2)

Here, Ũf is the LES gas velocity; Co = 1 is a dispersion constant [31, 32, 34];

the sub grid scale (SGS) kinetic energy kSGS of the gas phase is calculated

as kSGS = 2∆2C
2/3
s S̃ijS̃ij [35], with S̃ij being the filtered strain tensor; τt is

a time-scale representative of the disperse and continuous phase turbulent

interaction; τp is the particle relaxation time; and dW = χ
√
dt is the incre-

mental Wiener term, where χ is a random variable sampled from a normal

distribution with mean 0 and variance 1. The particle relaxation time is

determined from:

τ−1
p =

3

4

ρfCD
ρpdp

|Ũf − vp| (3)

where ρp, ρf are the particle and continuous phase densities, respectively, and

dp is the particle diameter. The turbulence interaction time-scale is found
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from:

τt = τp

(
τpk

1/2
SGS

∆

)2α−1

(4)

where the constant α = 0.8, as proposed in [35, 36, 37].

The drag coefficient, CD, is defined by the drag law of Yuen-Chen [38],

assuming spherical particles and using an empirical relation based on the

particle Reynolds number Rep = ρpdp|Ũf − vp|/µ, viz:

CD =


24
Rep

(1 +
Re

2/3
p

6
) Rep < 1000

0.424 Rep > 1000

(5)

The Brownian diffusivity of nucleated particles is estimated to be Dp ∼

O(10−6) based on the jet temperature and dp = 2 nm, (with a Cunningham

slip correction of 100). This diffusivity can be considered negligible compared

to the eddy diffusivity, Deddy ∼ O(10−2), and the sub-grid diffusivity repre-

sented by Eqn. (2). It has to be noted that for particles in the nano-scale,

the relaxation time is very small and the stochastic term is also expected to

be small.

For the solution of a given set of particle equations (1-4), the continuous

phase properties at the position of a given particle are provided from the

Eulerian LES using a linear interpolation of the cell-centred values in the

eight neighboring cells.

3.3. Nucleation Rate

In the context of this work the Classical Nucleation Theory (CNT) [39,

40, 41] is used to model nucleation. The nucleation rate İ[#/m3s] is given
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by the CNT as:

İ =
PvXv

kBT

√
2σ

πm
exp

[
−16πσ3m2

3(kBT )3ρ2
l (lnS)2

]
. (6)

The partial pressure and concentration of the nucleating vapor are Pv and

Xv, respectively; S = Pv/Psat is the saturation ratio, with the saturation

pressure Psat; the surface tension σ and condensed density ρl are retrieved

from experimentally fitted functions depending on the nucleating species; T

is the temperature in Kelvin; kB is the Boltzmann constant; and m is the

mass of a monomer, given by m = M/Navg, where M is the molecular weight

of the condensing species and Navg is Avogadro’s number.

Equation (6) stems from a thermodynamic equilibrium model, viz:

İ = Ioexp(−∆Ghom/kBT ), (7)

where: Io is a non-exponential scaling function; and ∆Ghom is the thermody-

namic barrier to homogeneous nucleation and represents the increase of free

energy of a system due to the formation of a nucleus of critical size d∗p, which

is given by:

d∗p =
4σvm
kBT lnS

, (8)

where vm [m3] is the volume of a monomer. It is noticeable that higher satu-

ration ratios and temperatures allow smaller droplets to be stable. Equation

(6) thus gives the rate of creation of particles of size d∗p at a given thermo-

dynamic state. A full analysis of the derivation of the terms can be found in

[7, 42, 43].

The wide use of CNT in the analysis of nucleation may be attributed

to the availability of data for many substances with regards to their macro-

scopic thermodynamic properties (σ, ρl, S) and the availability of critical
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supersaturation [8] values. However, the popularity of CNT has also lead to

numerous heuristic expressions for these properties in the literature, of which

a selection (including these used in the present work) are presented in Table

1. A small fluctuation in any of these macroscopic parameters may lead to a

difference of several orders of magnitude in the nucleation rates.

Table 1: DBP condensation properties

M = 278.35kg/kmol ref.[44]*

ρl = 1063− 0.826(T − 273)kg/m3 ref.[10, 12, 22]*

ρl = 1049− 0.67(T − To)kg/m3 ref.[4, 45]

Psat = exp
(
16.27− 5099

T−109.51

)
mmHg ref.[12]

Psat = exp
(
16.27− 5099

T−109.65

)
mmHg ref.[14]

Psat = 107.065−1666/T−547700/T 2
mmHg ref.[22, 45]*

Psat = 10−4501/T+12.88Pa ref.[4, 46]

Psat = exp
(

160.25− 16941
T
− 19.254lnT + 6.6324×10−6

T 2

)
mmHg ref.[44]

σ = (35.3− 0.0863(T − 273))× 10−3N/m ref.[10, 12]

σ = (33.93− 0.0894(T − 293.15))× 10−3N/m ref.[4, 45]

σ = 0.059663× (1− T
Tcrit

)1.2457N/m ref.[44]

σ = 1.04(35.3− 0.2(T − 273))× 10−3N/m ref.[22]

σ = 1.0(35.3− 0.13(T − 273))× 10−3N/m *

*Unless stated otherwise, these are the expressions used in this work

Additionally there have been a great number of modifications to the CNT,
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and therefore to the expression for İ. Lothe and Pound [47] considered

transitional and rotational degrees of freedom contributing to the free energy

∆G, increasing nucleation rates by 17 orders of magnitude. Reiss [48] argued

that using the experimental values for surface tension variation incorporates

these degrees of freedom, since the partial derivative of the Gibbs free energy

with respect to surface area is the surface tension. In an attempt to formulate

a self-consistent theory, Girshick et al. [49] proposed a correction factor to

the nucleation rate such that İsc = İ × exp(θ)/S, where θ = σsm/kBT is a

dimensionless surface energy and sm is the surface area of a monomer, such

that for a monomer ∆G = 0.

Several authors [50, 51] modified the nucleation rate by altering the en-

ergy barrier to include the differences between the surface free energy of a

cluster and of a liquid droplet. They included the self-consistent theory-

driven parameter 1/S in the nucleation term but added a contribution of

additional degrees of freedom and a curvature dependence of the surface en-

ergy on local thermodynamic properties. Hale [52] assumed a linear variation

of the surface tension with respect to temperature, and suggested that critical

supersaturation can be calculated with the use of a universal constant that

measures the excess entropy of a molecule’s surface. Granasy [53] suggested

a parametrization where both enthalpy and density profiles of the droplets

are shifted by a constant amount which is independent of droplet size. In

this way he obtained a curvature correction without having to re-establish

relationships for the macroscopic thermodynamic parameters. A thorough

review of the literature describing the various corrections to the CNT can be

found in the work of Laaksonen [8].
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From the above discussion it can be concluded that there are a number

of problems posed by the CNT. In principle it has shown good agreement

with experimental results, but has always been subject to modifications. It

can be argued that the parameter with the least certainty is the surface

tension (rather than the critical saturation temperature or pressure). A

correct treatment and calculation of σ may mitigate the effects of additional

degrees of freedom on the activation energy required for nucleation, along

with material-based inconsistencies. Following a parameter analysis, and

similarly to the work of Garmony and Mastorakos [22], the surface tension

was modified to match the order of magnitude of nucleation rates observed

for this particular test case (see Table 1).

3.4. Turbulent Coupling

A number of studies [4, 20, 22, 54] have shown that the calculation of

nucleation rates from mean values leads to erroneous results, due to the

high non-linearity of Eqn. (6). The test case studied in this work has been

simulated using a number of methods which stem from population balance

modelling, and these are outlined below.

The evolution of the PSD in turbulent flows can be described mathe-

matically using the Population Balance Equation (PBE). The PBE is an

equation for the evolution in space and time of the particle number density,

N (dp; x, t), for a given particle diameter dp. The integration of N over all

possible diameters gives the total number of particles per unit volume, Np.

An in-depth investigation of the PBE exceeds the purpose of this work; the

interested reader may refer to the review of Rigopoulos [55].

Garmony and Mastorakos [22] implemented a two-dimensional RANS us-
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ing a stochastic fields method for the solution of the PBE. The nucleation

rate was considered as a source term, adding newly formed particles of size d∗p

to the equivalent class of the number density equation. A moment-based ap-

proach [56] was used, where an Itô equivalent Stochastic Partial Differential

Equation was solved for the evolution of five scalars (temperature, concentra-

tion and the first three moments of the PBE) and a log-normal distribution

was presumed for the unresolved moments.

Veroli and Rigopoulos [4] followed a PBE-PDF approach [57]. They trans-

port a one-point joint-PDF of temperature, concentration and a set of dis-

cretized number densities. The RANS-PDF simulation was solved using a

Lagrangian Monte Carlo method [58].

Zhou and Chan [9] proposed an Equivalent Mean Nucleation Method

(EMNM) coupled with an LES solution for the jet flow. Along with the uni-

form phase solution, DBP concentration and temperature distributions were

solved using LES (assuming Le = 1). The EMNM splits the nucleation equa-

tion (6) into its exponential and pre-exponential terms. The pre-exponential

term, as well as the surface tension, density, and saturation ratio, varies much

slower with temperature than the exponentiated function. These values are

assummed constant within the narrow temperature range over which nucle-

ation takes place. By integrating the product of the strongly-dependent ex-

ponential term with a temperature PDF, the temporal fluctuations are taken

into account. The EMNM assumes that due to the sensitivity and rapid na-

ture of nucleation only a narrow temperature range needs to be integrated

over. The mean particle concentration was assumed to be independent of

fluctuations in the source term, and on that basis the time-averaged nucle-
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ation rate was used for all time-steps [9].

In the present work, nucleation is modelled using the LES spray-PDF

equation, of which the derivation can be found in Jones et al. [33]:

∂P̃
∂t

+
∂

∂Xp

(UpP̃) +
∂

∂Vp

(ApP̃) +
∂

∂Np

(ṄpP̃) = 0 (9)

The spray-PDF P̃ = P̃(Vp; Xp;Np, t) describes the joint probability of the

particle phase state vector Φ to retrieve a specific value at a given time. Here,

the state vector includes seven variables: the three dimensional velocity Vp

and position Xp, and the number concentration Np. The rates Up and Ap

represent the conditional mean particle velocity and acceleration as functions

of time and space. These quantities can be retrieved by ensemble-averaging

the path equations (1) and (2) conditioned upon the local state vector de-

scribing the process. Lower-case letters are used to describe the Lagrangian

realizations np, xp and vp of the (upper-case) equivalent random variables.

If only nucleation is considered (i.e. neglecting fragmentation and aggre-

gation), every formed particle of size d∗p is represented by a single numerical

parcel which has a constant number concentration, np, throughout its mo-

tion. Therefore for the equivalent path and Eulerian formulations we have:

dnp
dt

= i (10)

Ṅp = İ −Uf
∂Np

∂x
, (11)

where the Lagrangian rate ‘i’ is used to differentiate from the Eulerian nucle-

ation rate İ. Note that the convective effects in (11) are included implicitly

in the particle path equations (1) and (2), as the rate in (10) is Lagrangian

and represents a total derivative. Essentially the Lagrangian rates of change
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of concentration are conditioned upon the event of a particle being at a given

location x of the Eulerian domain at a time t.

If physical particles are used the spray-PDF is only a function of Xp,

Vp and time t. The addition of a particle by nucleation simply adds a

path (realization) to the trajectories of position (1) and acceleration (2). If

notional particles (i.e. stochastic parcels) are used, in which the real particle

number concentration can vary from and include zero, equation (10) must

be solved as well.

If physical particles are used, the Eulerian variable Np(x, t) representing

particle concentration in a given position and time is reconstructed from the

instantaneous sum of the individual paths conditioned upon their location x.

Once temporally averaged, 〈Np(x, t)〉t gives the mean particle concentration

at a given location of the Eulerian domain. In contrast, if the number density

is included in the particle state vector, the ensemble average of the number

density paths of the stochastic parcels would give N (dp; x, t), and the con-

ditional ensemble average rate of change of the individual paths would be

required to evaluate Ṅ (dp; x, t).

Using equation (9), the PSD can be readily retrieved at any location in

the domain by constructing a histogram of the number of particles at that

location as a function of their size. This is equivalent to including the particle

size in the spray-PDF formulation and calculating the joint probability of

particle concentration and diameter by eliminating the remaining state vector

variables, whereNtot is the total particle number concentration in the domain:

N (dp, t) = Ntot

∫
Xp

∫
Vp

P(Vp; Xp; dp;Np, t)dXpdVp (12)

Multiplication by Ntot is required as the spray-pdf has a unit integral whereas
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the integral of the number density should be equal to the total number of

particles per unit volume.

3.4.1. Probabilistic approach to nucleation

The proposed method takes advantage of the ability of LES to provide

instantaneous values of the uniform phase velocities, temperatures and con-

centrations, thus enabling the calculation of an instantaneous nucleation rate.

This avoids the errors of several orders of magnitude that may result where

nucleation rates are calculated from mean flow quantities. Similarly, one may

expect that nucleation rates calculated from temporal-mean values, such as

the ones used in the aforementioned studies, result in a level of lost informa-

tion regarding instantaneous rates. Before describing the method used in the

present work, the drawbacks of other approaches are presented to illustrate

the need for an alternative methodology.

The first consideration relates to the framework in which the nucleation

rate should be calculated: namely, should the rate be transported by Eq.

(10), or calculated on a purely Eulerian-node basis Eq. (11). To illustrate

this, consider a 3-cell grid of a 3×1 m domain with a constant velocity inflow

plane and thermodynamic conditions giving a constant rate İ = 0.4#s−1/cell,

as in Fig. 2.

If the time-step is ∆t = 1 s, the grid-spacing is ∆ = 1 m, and the

velocity is Uf = 1 m/s, then for the whole domain a single particle should

be created after every time-step. Nucleation is a jump process, however,

suggesting that a particle can either be created or not. On a cell basis, after

a single time-step, 0.4 particles are created; therefore no physical particles

are added to any of the cells. Arguably one may avoid this by creating
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Figure 2: If three cells have a constant nucleation rate of 0.4 particles per cell per second,

the whole domain should produce one particle every 0.83 s. However due to the discrete

nature of particles, each cell creates 0.4 particles i.e. no physical particles. If fluid enters

from the left with a velocity of Uf = 1m/s and a cumulative nucleation term is considered

then as transported from the first cell to the last with a time-step of 1s a single particle

is created in the last cell.

an accumulation parameter for every cell and adding one particle to every

cell after 3 s. However, using an accumulation parameter implicitly assumes

time-averaging of the instantaneous nucleation rate in cases where İ is not

constant in a cell.

By considering an ‘accumulated’, i.e. a transported source term ‘i’, the

above problem can be surpassed. The nucleation rate is transported such that

after the first time-step 0.4 notional particles are created in the first cell; in

the next time-step, after moving to the next cell, 0.8 notional particles are

created; and in the final time-step a physical particle is added into the last

cell. Such a transported approach creates two additional issues. Firstly,

a bias is created towards particle creation in the final cell, even though in

theory the nucleation rates are constant throughout the domain (suggesting

that the same number of particles are created everywhere).
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Secondly, a transported approach creates a dependence of particle cre-

ation on the relation between flow-through time and nucleation residence

time. To illustrate this, consider the same example as above (where the local

concentrations and temperatures give a constant nucleation rate for every

cell of 0.4 particles per second), but with a reduced time-step of 0.5 s and a

velocity of Uf = 2 m/s (Fig. 3). By transporting a notional particle which

accumulates ‘substance’ in every cell, by the end of the domain 0.6 notional

particles are created; therefore no physical particles are added. For a fixed

CFL number, the reduced time-step is equivalent to a faster-moving flow. If

one tracks the motion of a control volume moving at this speed and with con-

stant thermodynamic conditions, the residence time of nucleation τnuc (i.e.

one particle per cell in 2.5 s) must be less than or equal to the flow-through

time τflow = 3∆/Uf for a particle to be created. For the present case this

tracking would result in no particles being created even after t > τnuc, even

though the local thermodynamic conditions should create a particle in the

domain approximately every 0.83 s.

In hindsight, CNT stems from a thermodynamic equilibrium theory where

the saturation and concentration levels are known for a closed system, en-

abling the calculation of a nucleation rate. Therefore the main question is

how to treat such an equilibrium theory in non-stationary turbulent flows.

From the example illustrated in Fig. 2, one may observe that the deriva-

tion of the nucleation rate from an equilibrium theory involves a lack of

information, since it is a predicted mean. Knowing the overall nucleation

rate for the domain we expect a particle to be created within 0.83 s, but

there is no knowledge in terms of when it will occur, and in the case of the

20



Figure 3: Consider three cells which have a constant nucleation rate of 0.4 particles per

cell per second, the time-step is 0.5 s, and the inflow plane velocity is Uf = 2 m/s . A

transported nucleation rate approach creates a bias towards particle creation in the final

cell and a dependence between flow-through time and nucleation residence time.

transported example (figure 3) where. The nucleation rate gives a sufficient

condition for a number of particles to be formed within a volume in a given

time, but it does not provide a conditionality for this creation.

The solution presented in this work assumes that the nucleation rate can

be treated as the transient probability of a stable embryo being formed, and

not just a steady-state condition for its creation. This assumption agrees

well with the suggestion of McDonald [59], that nucleation is intrinsically a

probabilistic process. The inverse of the nucleation rate can be considered

as the average time required for a particle to nucleate. By calculating the

instantaneous nucleation rate for each time-step at each node of the Eulerian

domain, one may calculate the residence time required for a single particle

to be created in the vicinity of the node:

τnuc =
1

İ × Vcell
, (13)

where Vcell is the volume of the cell. Here, we assume that the time τnuc

represents an event with unit probability Pnuc(τnuc) = 1.0, i.e. a single
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particle will be created in time t = τnuc. The probability of a particle being

created in the interval 0 ≤ t ≤ τnuc is assumed to increase linearly with t :

Pnuc (t) =
t

τnuc
. (14)

Pnuc is a Cumulative Distribution Function (CDF), and provides the proba-

bility of an event to occur at any time within the interval 0→ t. The linear

increase of the CDF suggests a uniform PDF of value dPnuc/dt = 1/τnuc in

the range 0 ≤ t ≤ τnuc. It must be stressed that nucleation is an activated

process and not a probability per se and that the CNT gives the steady-state

transition rate (in this case DBP vapour→liquid). In stochastic theory, the

Mean First-Passage Time (MFPT) is defined as the average time elapsed

until a certain system leaves a prescribed domain for the first time [60]. The

MFPT as a function of current and initial state has a characteristic sigmoidal

shape [61]. The inverse of the steady state MFPT is directly related to the

transition rate İ and this is the scale we term τnuc. For simplicity, we assume

a linear increase in the probability (i.e. uniform pdf) of the activation barrier

crossing in the range of 0 < t < τnuc. However, the sigmoidal shape suggested

by the MFPT-theory in the work of Wedekind and co-workers could be better

approximated, for example, using a Poisson distribution.

Using the definition of equation (14) the nucleation jump term is mod-

elled as a particle injection into the domain, and the particle is thereafter

transported as described by Eqs. (1) and (2). The injection process can be

summarized as follows:

• The probability of a particle being created in a cell in one time-step

of the simulation is calculated using equation (14). Recall that the
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nucleation residence time is a function of space and time τnuc(x, t).

• If Pnuc > 1 the simulation time-step is reduced.

• A gambling process is performed using a random number Rn, sampled

from a uniform distribution in the range 0 ≤ Rn ≤ 1 to decide whether

to inject a particle:

Inject =

True, if Rn ≤ ∆t
τnuc

False, otherwise

. (15)

• If (15) is true a particle with size equal to the nucleation diameter d∗p

at that location is injected.

• The particle injection position is random (within the cell boundaries),

with a uniform probability distribution.

• The velocity and temperature of the newly-formed particle are linearly

interpolated from the cell-centred (Eulerian) values of the surrounding

cells.

The above method allows for the calculation and direct use of instanta-

neous nucleation rates, instead of mean quantities, without the addition of

any modeling parameters. In addition, by recalculating the residence time

in every time-step, positional biases of the type mentioned in the examples

of Figs. 2 and 3 are removed. The method can be readily applied in the

Lagrangian framework using an SDE described by a Levy jump process, viz:

dnp
dt

= i = J[x(t), t]δN j,τnuc

dt (16)

23



where J is a scaling tensor representative of the local nucleation rate i. The

increment δN j,τnuc

dt is the jth component of a stochastic counting1 process

with time increments dt and a mean rate τnuc, which usually follows a Pois-

son distribution. The advantage of a Lagrangian description is that the exact

location of nucleation is retrieved, since the species, temperature, and pres-

sure are transported (or interpolated) at the exact location of the notional

parcel.

For the particular test case studied, the residence time for a single cell

with a mean nucleation rate of 1011#m3s (equivalent to the maximum ob-

served nucleation rate, so as to consider the most conservative scenario) and

a cell volume of ∆3 is of the order of 1 s, whereas the time-step widths are

of the order of 10−6 s based on the maximum flow velocity, cell size, and

a CFL = 0.3. This suggests that the simulation should run for at least

106 time-steps for one particle to be seen in every cell with this mean nu-

cleation rate. Therefore, in this study, the nucleation rate is modelled in

an Eulerian framework and the parcels represent physical particles which are

subsequently transported in a Lagrangian framework using equations (2) and

(1).

The time convergence of the concentration statistics is promoted by a

multiplying factor, which essentially increases the sampling time. This fac-

tor (here fr = 100) is multiplied with the LES time-step such that additional

particles are created for a single nucleation event without influencing the

thermodynamic parameters of the formation. Therefore, if the condition of

1The term ‘counting’ is used to clarify that the set of realizable values is discontinuous.
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(15) is true, fr particles are injected which are subsequently tracked individ-

ually. Approximately 1 million particles were present in the domain at an

instant in time. The reconstruction of the Eulerian concentration field from

the Lagrangian particles is then divided by fr at every nodal point of the

field. Simulations are run both with and without the use of the multiplying

factor, and the results are compared in section 4.3.

3.4.2. Modelling the unresolved scales

The time-averaging of nucleation rate may lead to both implementation

errors and a problematic description of equation (6) when applied to non-

stationary flow conditions. LES filtering may be described as the convolution

of a function g(x, t) with a filtering kernel G∆ over a given volume V :

g̃(x, t) =

∫
V

g(x, t)G∆(x, t)dV, (17)

where g̃ is an LES filtered quantity. LES filtering introduces unresolved sub

grid-scale fluctuations of the transported quantities. These fluctuations may

influence the nucleation rates, depending on the level of concentration and

temperature information resolved by the LES (and consequently the level of

lost information regarding fluctuations) within a cell.

Recently, Fager et al. [62], investigated the relative effects of sub-grid

scales on the nucleation rate by a posteriori filtering of DNS of turbulent

jet They concluded that the filtered nucleation rate is under-predicted in

inner-regions of the jet and over-predicted in the outer regions. Similarly,

Murfield and Garrick [25] found that the overall sub-grid effect is to increase

the values of nucleation when these were high, and to decrease them when

they were low.
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For Le = 1, a single scalar ξ̃ can be defined from the normalized temper-

ature or vapor concentration, viz:

ξ̃ =
T̃ − Tcf
Tjet − Tcf

=
X̃ −Xcf

Xjet −Xcf

, (18)

where the subscript cf refers to the co-flow initial/inlet conditions. The tilde

corresponds to the LES-filtered value of the defined scalar ξ̃, temperature field

T̃ , and DBP concentration X̃. The nucleation rate can therefore be written

as İ(T,X) ≈ İ(ξ), while its filtered equivalent is ˜̇I(ξ). However:

˜̇I(ξ) 6= İ(ξ̃). (19)

The inequality of equation (19) implies that a model is needed. The mod-

els employed here are a presumed β-PDF and a source expansion approach

outlined below:

A. β-PDF

The scalar PDF fξ(ψ; x, t) represents the distribution of the realizations

ψ of the scalar ξ at a given position x and time t [63]. Note that in the

context of LES the scalar PDF is also termed the filter density function; the

term PDF will be used here for consistency. For a complete review of the

derivation and applications of the scalar PDF the interested reader may refer

to [64, 65, 66].

One may retrieve the filtered-average source term at a given location from

its convolution with fξ:

˜̇I(ξ) =

∫ 1

0

İ(ψ)fξ(ψ; x, t)dψ (20)
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If the distribution fξ is known, the filtered nucleation rate can be directly

evaluated.

There are two approaches for the use of the scalar PDF. The first is the

‘transported PDF’ approach, in which there is no assumption made regard-

ing the shape of the distribution. The transported PDF method is therefore

capable of capturing inhomogeneities, but suffers from an increased compu-

tational expense. The second method has a significant advantage in compu-

tational time by making an a priori assumption for the shape of the PDF, of

which the most popular is the β-PDF (but other functions are also suitable

such as this of Floyd et al. [67]). The presumed PDF method has been used

in a number of precipitation studies [68, 69]. The β-PDF for the sub-grid

distribution of a passive scalar has shown good agreement with experimen-

tal data and a priori studies in a range of applications including confined

jets [70], turbulent mixing [71] among others [72, 73, 74]. For its computa-

tional efficiency and adequate description of the SGS scalar distribution, the

univariate β-PDF (21) is chosen:

fξ(ψ; x, t) =
Γ(β1 + β2)

Γ(β1)Γ(β2)
[ψβ1−1(1− ψ)β2−1], (21)

where Γ is the gamma function. The shape parameters β1 and β2 are eval-

uated using the first two moments of the distribution, i.e. the mean ξ̃ and

variance ξ̃”2 , see [75]. The mean ξ̃ is derived from the evolution of the tem-

perature (or concentration field) making use of equation (20). The variance

ξ̃”2 is calculated using the proposed method of Pierce and Moin [76], as used

in [77, 78]:

ξ̃”2 = Cξ∆
2|∇ξ̃|2, (22)
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with a model constant of Cξ = 0.1 as proposed by Branley and Jones [77].

The SGS scalar distribution and derived filtered source terms are tabulated

for all combinations of means ξ̃ and variances ξ̃”2 to minimize computational

time.

B. Source Expansion

An alternative method for the evaluation of the filtered source term has

been proposed by Vogiatzaki and Navarro-Martinez [79], and is implemented

here in the context of nucleation. This approach stems from a Taylor series

expansion of the nucleation rate about the filtered scalar ξ̃:

İ(ξ) = İ(ξ̃) +
∂İ(ξ)

∂ξ

∣∣∣∣
ξ̃

∂ξ

∂xi
δxi +

1

2

∂2İ(ξ)

∂ξ2

∣∣∣∣
ξ̃

∂ξ

∂xi

∂ξ

∂xj
δxiδxj + ... (23)

where the variation of the scalar space to spatial space is related by δξ =

δxi∂ξ/∂xi.

Equation (23) is subsequently filtered. Assuming that spatial gradients

and the vector δx are uncorrelated (i.e. δ̃xmg ≈ δ̃xmg̃), one may define the

moments of δx as Mm =
∫
|δx|mG∆dV . The odd moments of the filtered

spatial variation are zero, and for a Gaussian filter the even moment M2 =

∆2/12 [80]. Ignoring high-order terms, the resulting filtered expansion reads:

˜̇I(ξ) ≈ ˜̇I(ξ̃) +
∆2

24

∂2İ(ξ)

∂ξ2

∣∣∣∣
ξ̃

∂̃ξ

∂xi

∂ξ

∂xj
. (24)

The unfiltered terms can be evaluated directly from the filtered scalar

value. The first term of the RHS requires additional modelling since ˜̇I(ξ̃) 6=

İ(ξ̃). To do so a quadrature method is employed using the trapezoidal rule for
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the weights, ωij, and the values of the source term from eight neighbouring

cells evaluated at the equivalent filtered scalar values, viz:

˜̇I(ξ̃) = ωij İij(ξ̃) (25)

The last term of the RHS of (25) involves filtering. It is therefore split

into its filtered and SGS parts. The sub-grid contribution İsgs (by analogy

with the scalar variance) is modelled using equation (26) with a constant of

proportionality Csgs = 0.1 by equivalence to Eqt. (22).

İsgs =
∂̃ξ

∂xi

∂ξ

∂xj
− ∂ξ̃

∂xi

∂ξ̃

∂xj
≈ Csgs

∂ξ̃

∂xi

∂ξ̃

∂xj
(26)

Combining equations (24), (25), and (26) results in the following expres-

sion for the evaluation of the filtered source term:

˜̇I(ξ) ≈ ωij İij(ξ̃) +
∆2

24

∂2İ(ξ)

∂ξ2

∣∣∣∣
ξ̃

(1 + Csgs)
∂ξ̃

∂xi

∂ξ̃

∂xj
(27)

The second derivative of the nucleation rate was derived analytically and

tabulated with 10000 bins of the scalar ξ to minimize computational time.

4. Results

4.1. Uniform phase

Figure 4 shows the instantaneous and mean axial velocity contours of the

LES. The jet enters the chamber via an insulated nozzle and mixes with the

co-flow of air. After an initial undisturbed region a shear-mixing layer devel-

ops and co-flowing air is entrained into the developing jet which facilitates

its spreading.
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Figure 4: Instantaneous (left) and mean (right) axial velocity contours
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Figure 5: Centerline velocity normalized by the jet velocity along the domain.
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Figure 6: Radial velocity plot normalized by the centerline velocity and axial location.

The solution becomes self-similar for mean profiles beyond Zd/Djet = 30

The LES solution of the velocity distribution was compared to the ex-

perimental data of [21] and the self-similar jet solution of Hussein [18].

Figure 5 depicts the centerline velocity normalized by the jet velocity along

the domain. A good agreement is found with the experimental data near

the jet outlet, but a slower decay is observed further downstream, which

persisted for smaller ∆ and with the use of the dynamic Germano model

[81]. A more gradual radial decay (compared to the experimental findings

of [21]) was also observed in the LES of Zhou and Chan [9] and the RANS

of Veroli and Rigopoulos [4]. It can be seen that the LES results are closer

to the self-similar solution than to the experimental data. The radial profile

collapses on to a single self-similar solution beyond Zd/Djet = 30, as shown

in Fig. 6. Hussein [18] observed a similar position at which self-similarity is
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Figure 7: Centerline scalar distribution in axial direction normalized by the initial jet

concentration. The points represent the self-similar solution of [82].

reached.

In the experiment, temperature and concentration axial decay was not

measured. The self-similar solution for a turbulent jet of [82] is therefore

used for comparison with the LES results (see Fig. 7).

4.2. Nucleation Rate

As in previous work [4, 22, 9], the CNT was found to significantly un-

derestimate the observed nucleation rates by six orders of magnitude. A

modification to the surface tension similar to the work of Garmony and Mas-

torakos [22] was implemented to compensate for this discrepancy. Figure 8

shows the variation of the nucleation rate with the scalar ξ for DBP at the

reference temperatures of the experiment. The nucleation rate is significant

only for a narrow (30%) range of the values of ξ.
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Figure 9: Instantaneous (left) and mean (right) nucleation rate contour plots. The nucle-

ation rate reached a peak of order 1011 [#/m3s].
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Figure 9 shows a snapshot of instantaneous (left) and mean (right) nu-

cleation rates from the LES. From the mean profiles of Fig. 9 it is noticeable

that the highest nucleation rates are observed near the centreline between

Zd = [30− 50] mm. On the other hand, the positions where high nucleation

rates occur instantaneously are highly irregular. It should be noted that the

mean values shown in Fig. 9 are the time-averaged instantaneous nucleation

rates from the LES. These mean values are not calculated from time-averaged

scalar concentrations, i.e. the mean nucleation rate from the LES simulation

is ¯̇ILES =
〈
İ
(
ξ̃
)〉

t
, where < · > denotes averaging over a number of tempo-

ral samples. In contrast, for RANS simulations and the LES performed by

Zhou and Chan [9], the mean nucleation rate was calculated from the con-

verged mean scalar distribution: i.e. ¯̇IRANS = İ(ξ̄) and ¯̇IEMNM = İ
(
〈ξ̃〉t
)

,

respectively, where the same notation is used and ξ̄ represents the converged

RANS scalar distribution).

An equivalent RANS nucleation rate has been calculated using the values

of the LES time-averaged scalar concentration on the centreline (shown in

Fig. 7) and is compared to the LES time-averaged nucleation rate. It must

be noted that the term equivalent is used because RANS simulations include

treatment of the temporal fluctuations. This is therefore a ‘naive’ RANS of

a type that would not be implemented in practice.

Figure 10 (left) depicts that the non-linearity of the nucleation term pro-

duces different mean rates for the two cases considered. The use of instan-

taneous values of the scalar broadens the distribution of the mean rate and

slightly shifts the position of the peak downstream. The RANS equiva-

lent case suggests that no particles will form before Zd = 18 mm, which
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Figure 10: Left: LES nucleation rate calculated from time-average instantaneous values,

i.e. ¯̇ILES =
〈
İ
(
ξ̃
)〉

t
, versus an equivalent ‘naive’ RANS where the nucleation rate is

calculated using the time-averaged scalar values, i.e. ¯̇IeqRANS = İ(〈ξ̃〉t). Right: pdf(ξ̃) at

the two locations marked A and B.
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Figure 11: PDF of critical nucleation diameter at two axial locations.

contradicts the experimental findings of [10]. At the two locations marked

‘A’ and ‘B’ (Zd = 10, 40 mm, respectively) the equivalent probability den-

sity functions of the LES scalar ξ̃ are shown along with the absolute and

relative difference of the two nucleation rates: ∆İ = ¯̇ILES − ¯̇IeqRANS and

εİ = ∆İ/ ¯̇ILES, respectively. The flapping of the jet near the location ‘A’

produces a wide temperature pdf and a significant difference in the nucle-

ation rates calculated from the LES and the ‘naive’ RANS. At location ‘B’,

the pdf is narrower and therefore the relative difference between the two rates

is smaller, yet significant (approximately 35 %).

Figure 11 depicts the distributions of critical nucleation diameter d∗p, as

predicted by the CNT Eqn. (8), at the two axial locations ‘A’ and ‘B’. The

range of stable diameters given by the CNT for the instantaneous scalar

value at Zd = 10 mm spans over two orders of magnitude. A sharp delta-
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Figure 12: Histogram of formed particles tracked in the simulation.

type function is observed at Zd = 40 mm as expected from the narrow scalar

distribution of the equivalent location shown in Fig. 10.

Figure 12 is a histogram of the formed particles tracked in the simulation

at a given instant in time. The majority of the particles nucleated with a

diameter of dp ≈ 2.3 nm, which corresponds approximately with the peak

diameters of Fig. 11.

Figure 13 shows the scalar fluctuations on the centerline from the LES.

In the near-nozzle region the scalar deviates from its mean by up to 0.2,

which is equivalent to a temperature fluctuation of 23 K. This suggests that

although the mean concentration may result in insignificant or zero nucle-

ation, instantaneous rates may reach values of the order of 1011 [# /m3s].

Instantaneous data include a higher level of information than mean val-

ues, so that LES provides a significant advantage over RANS for this con-
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Figure 13: RMS scalar on the centerline.

figuration. Moreover, when nucleation is viewed in conjunction with particle

injection the differences between using mean and instantaneous values have

been highlighted in the examples of Figures 2 and 3.

To effectively use the additional information of the LES the particle cre-

ation must also be based on the local instantaneous conditions. The follow-

ing section provides an overview of the results of the proposed method for

the particle concentrations, and a comparison to the available experimental

data. Finally, the effects of the unresolved scales on particle concentrations

and nucleation rates are evaluated.

4.3. Particle Concentration

Figure 14 shows a snapshot of instantaneous and mean particle number

concentrations Nc [# per cell]. These fields are constructed from an ensem-

ble summation over the Lagrangian particles. In a given cell the particle
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Figure 14: Instantaneous (left) and mean (right) particle concentrations. Note that the

mean range varies from Nc = 0 − 0.0365 [# per cell], whereas the instantaneous Nc =

0− 0.15 [# per cell] .

number concentration is calculated at every time-step. When compared to

the nucleation contours in Fig. 9, one may notice that the position of peak

concentration is downstream of the position of the peak formation rate. This

is an outcome of the flow-field, i.e. ‘cumulative nature’ of this experimental

set up where particles accumulate as the jet decelerates. At a given axial

location, particles are counted using the CPC; however, the exact origin of

each nucleation event cannot be determined experimentally. Measurements

of particle concentration therefore have a cumulative bias, as particles nucle-

ated elsewhere in the domain are transported by the flow to the position of

the counter.

If particles always nucleated with the same initial diameter and constant

growth rate one would be able to determine their nucleation location from
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their current size and the required time to reach that size; in a turbulent

flow, however, there are fluctuations in the nucleation diameter as well as

in the position at which a particle is formed. The cumulative effect in the

CPC measurement becomes one of the primary reasons for which nucleation

rates cannot be directly measured in an open system. In contrast, expansion

chambers, which are used to measure nucleation rates in a confined volume,

allow for a certain residence time (equivalent to the expansion stroke of the

piston) before nucleation is quenched (by a slight re-compression of the pis-

ton). Nucleation rates can therefore be measured by counting the number of

particles produced within the volume of the chamber, in the allowed residence

time, under the enforced macroscopic thermodynamic state. In turbulent nu-

cleating jets (and in open systems in their generality) the exact origin of a

nucleation event cannot be traced, and hence the formation rate at a given

location cannot be determined.

Figure 15 depicts that the use of a multiplying factor to the nucleation rate

leads to a more rapid convergence in particle concentration statistics. The

flow has correlations which are much shorter than the nucleation residence

time, and in conjunction with the results in Fig. 15 it can be argued that

the multiplying factor does not adversely influence the nucleation process.

The LES results with no contributions are compared to the experimental

results in figures 16 and 17.

Good agreement is found with the experimental results and with the

computations of Garmony and Mastorakos [22]. DiVeroli and Rigopoulos

[4] underestimated the concentration levels by at least one order of mag-

nitude. It should be noted that the LES underestimates the first particle
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Figure 15: Mean particle concentration along the centerline, with and without a multiply-

ing factor. The results are averaged after 100 and 200 time-steps, respectively.
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Figure 16: Particle concentration on the centerline in the axial direction. The LES results

are compared to the experimental data and two previous numerical solutions for this test

case
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Figure 17: Particle concentration on the centerline in the axial direction. A longer domain

was used and a similar decay of particle concentration was found downstream

concentration measured experimentally. However, the axial trend in parti-

cle concentration levels is well-captured by the LES further downstream, as

shown in Fig. 17. A similar underestimation of the first measured point

was reported in the work of Garmony and Mastorakos [22]. The discrepancy

may be caused by extra nucleation in the sampling tube: the residence time

in the sampling tube leading to the CPC is around 0.3 s, which may lead

to additional nucleation at upstream locations where the DBP vapor con-

centration is still high. Moreover, the jet flow becomes self-similar beyond

Zd/Djet = 30, (70.5 mm) and therefore vapour concentration and tempera-

ture distributions only become self-similar downstream of the first measured

point. Therefore a closer examination is required both of nucleation rates

and of particle number concentrations.
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Figure 18: Time average particle concentration on the centreline in the axial direction.

The LES results without closure are compared to two different sub grid closure models.

4.4. Effects of unresolved scales

The β-PDF and source expansion methods described in section 3.4.2 were

implemented to examine the effects of the sub grid-scales on nucleation rates

and particle concentrations. From Fig. 18 it can be seen that there is no sig-

nificant difference in the particle concentration distributions from the three

cases (no model, β-PDF, and source expansion) in the axial direction along

the centreline. However, the cumulative effect in the particle dispersion pro-

cess may mask a possible discrepancy between models. Therefore a closer

examination is required both of nucleation rates and of particle concentra-

tions.

Figure 19 shows the radial distribution of particle concentration at three

positions in the domain (Zd/Djet = 5, 10, and 20). Further downstream
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Figure 19: Time average particle concentration in the radial direction at positions

Zd/Djet = 5, 10, and 20 (moving from the bottom left corner to top right).

the particle concentrations are higher, but there seems to be no systematic

difference in nucleation rates between the three approaches for the treatment

of the SGS fluctuations.

Following a similar analysis to the particle concentrations, Figures 20 and

21 depict the axial and radial LES mean nucleation rates. These values are

time-averaged from the instantaneous nucleation rates, as opposed to the

RANS equivalent illustrated in Fig. 10 or the EMNM model of [9] which use

the mean scalar distribution to calculate the mean nucleation rates. From

these figures one may deduce that the differences between the models are

small. The inclusion of an SGS closure model results in a slightly higher

mean nucleation rate near the peak around Zd = 40 mm and lower values

downstream (figure 20). Similarly, small differences are observed in Fig. 21
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Figure 20: Mean nucleation rate in the axial direction.
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Figure 21: Mean nucleation rate in the radial direction at positions Zd/Djet = 5, 10, and

20 (moving from the bottom left corner to top right).
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Figure 22: Scatter plot of scalar sub-grid variance versus scalar LES value for the two

locations ‘A’ and ‘B’ of Fig. 10 (Zd = 10, 40 mm, respectively). The solid (yellow) lines

represent an ensemble averaged variance
〈
ξ̃′′2
〉
ξ

for every value of ξ̃.

which shows the mean nucleation rates in the radial direction at positions

Zd/Djet = 5, 10, and 20.

Figure 22 is a scatter plot of the sub grid scalar variance ξ̃′′2 versus the

equivalent LES value ξ̃. Data pairs are collected for the two locations of Fig.

10, where Zd = 10 and 40 mm, respectively. As expected from Fig. 10 the

range of values that the scalar ξ̃ acquires in the LES is considerably smaller

at location ‘B’ compared to those at ‘A’. For every value of the scalar ξ̃ the

equivalent ensemble averaged variance
〈
ξ̃′′2
〉
ξ̃

is calculated and represented

by the solid lines of Fig. 22. The SGS modelled variance is ξ̃′′2 << 0.1 in

both locations. Therefore (and by comparison to İ(ξ) in Fig. 8) a negligible

variation is observed in the mean nucleation rate because of the modelled sub

grid scale fluctuations. A five-fold increase of the model constant Cξ of Eqt.

(22) would still result to very small values of the sub grid scalar variance.

From the above results one may draw the following conclusions regarding
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the SGS contribution to nucleation rates. The mean nucleation rate seems

to be unaffected by the fluctuations of the scalar within a cell. However,

this is not the case for temporal fluctuations: the use of time-averaged scalar

values for the calculation of the mean nucleation rate leads to results that are

significantly different to the time-averaged instantaneous nucleation rates,

as depicted in Fig. 10. Considering the nucleation rate as a source term

equivalent to a reaction source term, one may suggest that within a cell of

volume ∆3, the sub grid mixing is much faster than the nucleation residence

time (i.e. similar to the case of a well-stirred reactor). This can be quantified

using an equivalent Damkholer number, D∗
A, defined here as the ratio between

an SGS time-scale (conservatively estimated as the integral length scale lI

and the RMS velocity) and the nucleation residence time:

D∗
A =

lI/uf,rms
τnuc

. (28)

Considering a fluctuation of the order of 10% of Ujet and the maximum

nucleation rate (i.e. the minimum residence time) the time τnuc required for

a single particle to form in a cell is of the order of O (10−1) s, whereas the

SGS mixing time-scale is of the order of O(10−4) s. Therefore D∗
A << 1,

suggesting that the LES cell volume is homogeneous and well-stirred with

regards to the temperature and DBP concentration. This explains why such

small differences are observed when different models are included for the SGS

contributions and why temporally-averaged filtered values are unaffected by

the unresolved fluctuations. This does not mean that the instantaneous

nucleation rates for the three approaches coincide.

Figure 23 shows the instantaneous nucleation rate for three cases, namely:

no-SGS, β-PDF and Source Expansion model. The nucleation rates are eval-
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Figure 23: Instantaneous nucleation rate at Zd/Djet = 10 calculated from the same LES

using the source expansion and β-PDF methods, and with no model.

uated from the same instantaneous scalar field, at a cross-section of the

domain (Zd/Djet = 10) specified by the dashed line on the contour plot of

the same figure. One may notice that the sharp peaks and the sharp changes

in the gradient produced by the calculation without a model are smoothened

(up to 15% at R = −2.5 mm) when accounting for the SGS fluctuations.

The two models react similarly, but not identically. The β-PDF method

follows the no-model case closer than the source expansion method. The

source expansion method seems to be smoother; this can be attributed to

the nature of the model, namely that it performs a Gaussian quadrature

filtering.

Arguably, for Le 6= 1, the instantaneous filtered nucleation rate would

depend on fluctuations of both temperature and DBP concentration, which
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should be treated separately.

Two major conclusions can be extracted for the effects of the SGS con-

tributions on nucleation rates. Firstly, for the particular test case and LES

in question the conditions can be considered to be similar to those of a well-

stirred reactor. This suggests that the mean filtered values remain unaffected

by the filtered-out scales. Secondly, the models do affect the instantaneous

results by reducing the peaks and smoothing the sharp gradients.

5. Conclusions

As the underlying physical process for many applications, nucleation has

received significant attention in both industry and academia. The highly non-

linear nature of the expression for the nucleation rate renders its numerical

simulation extremely difficult, but recent increases of computational power

have allowed a more in-depth investigation of the phenomenon.

This study has focused on an LES implementation of the nucleation rate

provided by the CNT for a turbulent DBP-laden nitrogen jet diffusing in at-

mospheric air. The main incentives of this work have been to take advantage

of the instantaneous rates delivered by the LES and to subsequently evalu-

ate their significance in comparison to the time-averaged values from more

traditional approaches. Moreover, the impact of incorporating the effects of

unresolved scales due to the spatial filtering have been evaluated using the

β-PDF and source expansion approaches. Having established the numerical

treatment and physical characteristics of the test case in question, the results

have been presented and discussed.

The proposed parameter-free method for the treatment of the nucleation
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rate as a probabilistic event has been found to predict particle concentrations

accurately in comparison to experimental values. The differences between the

LES and RANS-equivalent mean nucleation rates have been highlighted, and

the advantages of using the former have been discussed. The proposed prob-

abilistic method allows the advantages of LES to be extended to nucleation-

governed parameters, namely particle concentrations.

The problems of measuring nucleation rates experimentally for an open

system have been highlighted, thus stressing the importance of computa-

tional methods in the study of particle formation. It has been shown that for

the particular LES performed here, the effects of the unresolved scales are in-

significant for time-averaged mean values. The β-PDF and source expansion

methods predicted very similar particle concentrations and nucleation rates

in the radial and axial directions. Considering the particle nucleation rate

as a source term equivalent to a chemical reaction source term, an order-of-

magnitude analysis of the time-scales involved has shown that the case could

be considered to be well-stirred within the volume of a cell; this may explain

the minimal effect of the sub grid-scales on the mean LES values. However,

by closer examination of the instantaneous values it has been shown that the

models do affect the results.

Both sub grid-scale models reduce peaks and smooth gradients when com-

pared to the instantaneous nucleation rate calculated without a model, where

the source expansion method appears to have a more pronounced effect. No

significant difference could be seen for the particle concentrations. This be-

comes important when comparing to alternative approaches for the simula-

tion of nucleation rates, where it has been shown that the exclusion of fluc-
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tuations (temporal in RANS and spatial in the EMNM) leads to significant

differences in the calculation of particle nucleation rate and concentration.
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