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Highlights

• The problems of simulating aggregation for large particle populations

are highlighted.

• A stochastic multi-collision model to simulate aggregation is presented.

• The model presented allows for a direct coupling with an unsteady flow

solution.

• The model is validated against analytic solutions for two aggregation

kernels.

• The stochastic model is found accurate with respect to particle deple-

tion and PSD evolution.
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Abstract

Aggregation is an inter-particle process which involves a multitude of

different physicochemical mechanisms. In the present work, particles in the

nano-scale are considered, with such concentration that renders their direct

simulation as individual particles intractable. A stochastic aggregation model

is presented for large particle populations in a Lagrangian framework. The

model allows for simultaneous collisions between numerical parcels present in

a certain volume of interaction (e.g. computational cell) and can be directly

coupled to an unsteady numerical solver of a continuous flow. The model

performance is evaluated against analytic solutions for a sum (Golovin) and

constant aggregation kernel.
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1. Introduction

The intersection of particle paths may lead to a collision event and an

inelastic collision event to aggregation. A particle of volume υ (or mass m) is

formed by the aggregation of two particles with volumes υ′ and υ− υ′. How-

ever, its resulting volume is subject to the level of coalescence (also termed

‘sintering’ for solids), i.e. the extent to which the colliding-pair volumes

merge. Depending on the phase of the particle (solid, liquid, or gaseous), the

local thermodynamic conditions (e.g. temperature), and the collision process

(angle of attack, relative velocity, etc.) the particle will attach to the ‘re-

ceiver’ particle differently, forming fractal aggregate structures (such as soot)

or spherical aggregates. In the present study, particles in the nano-scale are

considered and instantaneous coalescence of the colliding pair is assumed.

Binary droplet and particle collisions are an area of interest with appli-

cations ranging from meteorological to industrial processes. Meteorological

phenomena such as cloud formation and raindrop formation drove research

on experimental studies of aqueous coalescence in atmospheric air, see works

by Adam and Lindblad (1968); Ashgriz and Poo (1990). Maximova and Dahl

(2006) review the environmental implications of aggregation phenomena in

the context of wastewater and gas emission treatment.

In the context of spray atomization, Gavaises et al. (1996) concluded

that coagulation greatly influences the Particle Size Distribution (PSD) and

consequently controls the particle relaxation times and velocities during in-

jection.

Following the reports by Brauer et al. (2002); Finlayson-Pitts and Pitts

(1997); Montes et al. (2004); Oberdorster (2001) on the effects of the size of

3



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

aggregates on health, modelling of soot aggregates from combustion has also

become an area of great importance , see Zucca et al. (2006).

Another example of industrial-scale nanoparticle aggregation is spray

drying technologies (e.g. for the manufacturing of detergents and water-

dissolvable powders), wherein aggregation governs the properties of the par-

ticles.

Aggregation can be both wanted and unwanted depending on the appli-

cation. Aggregation is promoted in mining and spray drying applications to

reduce wastage and make separation easier (e.g. enhance settling rates in

gravity based separations). However, aggregation may reduce product qual-

ity by widening the PSD. In order to control the PSD, there has been an

increasing effort to combine numerical modelling and experiments to inves-

tigate the aggregation process.

The objective of the present work is to develop a model for the aggre-

gation process in the post-spray region using the spray probability density

function (pdf) method of Williams (1958). The model focuses on applica-

tions particles with large number of particles, > O(108), such as nanoparticle

formation, where one-to-one collision approaches are intractable and macro-

scopic statistical models are hence sought. The aim is to model macroscopic

aggregation kernels in a Lagrangian framework in an implementation that

represents the physics involved in the aggregation process, yet at the same

time retains the advantages of the spray-pdf methodology. The proposed

model can be directly coupled to an unsteady representation of the continu-

ous flow field, such as Large Eddy Simulation, without any modification. In

the present paper, the model is presented and validated against analytical
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solutions for different aggregation kernels.

2. Modelling Aggregation

2.1. The aggregation kernel

The aggregation process involves collisions of particles to form new ones

with larger volumes. Consequently, both microscopic and phenomenological

approaches can be sought.

In microscopic approaches each collision event is considered separately,

such as the hard sphere collision model of Sundaram and Collins (1997);

Yamamoto et al. (2001) and Yan et al. (2008). Microscopic models are used to

understand the physics involved in the aggregation processes. Liao and Lucas

(2010) categorise the numerous models for fluid particle coalescence processes

and their relation to findings from binary (microscopic) collision experiments.

However, in particle-laden flows in engineering applications, the number of

particles, hereafter Ntot, render microscopic approaches intractable.

Phenomenological approaches treat the collision process in a macroscopic

framework. It is usually assumed that a collision event will result in the

immediate coalescence of the two particles. Consider that Cij is the number

of collisions per time and volume between two size classes i and j that form

a new class k with υk = υi + υj. The joint probability of a collision to

occur (and an aggregate to form) is quantified by the aggregation kernel (or

frequency), βij, and the respective concentrations Nc,i and Nc,j such that:

Cij = βijNc,iNc,j. (1)

The summation over all possible pairs i, j leading to a size class υk gives rise

to the Smoluchowski (1917) equation, also known as the Population Balance
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Equation (PBE). Considering only aggregation processes, the equation is:

dNc,k

dt
=

1

2

∑

i+j=k

βijNc,iNc,j −Nc,k

∞∑

i=1

βikNc,i. (2)

Where, the kernel βij incorporates the physico-chemical characteristics of

the process. Macroscopic parameters of both the continuous and disperse

phases may influence βij depending on the physical mechanism that drives

the aggregation process.

2.1.1. Modelling the coupled kernel

Solution methods for the flow-coupled aggregation stem from those for the

uncoupled kernel, namely: purely analytic, Method of Moments (MOM) and

its variations (QMOM, HMOM and DQMOM), sectional methods, Monte-

Carlo (MC) methods, and combinations thereof. These can be solved either

in an Eulerian or in a Lagrangian framework.

Purely analytic methods solve the aggregation integrals or the equivalent

closed set of moment integrals. Such solutions are confined to a limited

number of kernels (e.g. βij =constant, βij = υi + υj, or βij = υi × υj) for

which the simple integrals can be directly evaluated, see for example Scott

(1968), or used to close the PBE for specific initial PSDs (e.g. log-normal or

mono-disperse). However, if the particles have a wide range of initial sizes,

the aggregation kernel cannot be considered size-independent and analytic

methods become intractable.

Eulerian frameworks used for the population balance solve a set of ODEs

that result from a reconstruction of the PBE using a Method of Moments,

or a discrete number of size classes. The reader may refer to the review of
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Yu and Lin (2010) for an overview of moment methods to solve nanoparticle-

laden flows.

Other widely used Eulerian approaches for the solution of the flow coupled

PBE are discretization methods such as Yeoha and Tub (2006) and Miller

and Garrick (2004). The number of ‘bins’ used for the discretization must

represent the PSD accurately and a large number of bins might be required

in problems where the PSD covers a wide range or widens significantly due

to the particle processes, see Rigopoulos (2010). Azizi and Taweel (2010)

suggested to adjust the PSD if its range requires expansion or contraction.

Stochastic/Monte Carlo methods simulate the aggregation process within

a probabilistic framework; typically a Markov Jump process whereby two

clusters merge with a given rate Cij, see work by Wagner (2003). Stochastic

and deterministic solutions of the PBE can be combined, for example Zou

et al. (2010) combined a QMOM with an MC method. Rosner et al. (2003)

reviews mixed moment and MC methods.

Direct Simulation Monte Carlo (DSMC) methods involve the solution of

the PBE using stochastic particles that represent a single physical particle

Eibeck and Wagner (2003). In practical applications, the number of particles

suspended in the flow-field exceeds the computational capacity for a DSMC.

The MC methods therefore simulate the evolution of a subset of the real par-

ticles using stochastic parcels. These parcels may represent a set of moments

of the PBE, a set of discrete classes of the PBE, or a number of real particles

representing a sampled size from the particle population.

Monte Carlo methods in the context of particle aggregation can be broadly

categorised into two types of approaches, namely: constant number and

7
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constant-volume methods.

In constant-number MC, the number of simulated parcels does not change

even though the real particle population is reduced due to aggregation events.

The incentive is to reduce the statistical noise that would occur as a result

of a decrease in simulation parcels after aggregation. The vacant spot of the

particle array is refilled with the properties of a randomly selected particle

that has survived. Therefore, the average mass of the simulated particles

is also a random variable which depends on the mass of the (fictitious) new

particle, which is randomly selected to fill the vacant position of the depleted

particle; see work by Liffman (1992); Smith and Matsoukas (1998) and Lin

et al. (2002).

Constant-number MC simulations use the same number of real particles

per parcel and hence the tails of the PSD may not be sufficiently represented.

Patterson et al. (2011) suggested that parcels must be distributed homoge-

neously over the PSD, i.e. even though regions might have low populations

they must be represented by a sufficient number of parcels to statistically

capture the poly-dispersity. Differential weighting of parcels may therefore

mitigate errors that arise from a low resolution of the tails of the PSD.

2.1.2. The Interaction Volume and Aggregation Time-step.

In many practical applications, particles are in the nano-scale and their

Brownian motion is the leading aggregation mechanism. The equivalent

Brownian aggregation kernels are Eulerian in nature because the kernels are

formulated in terms of particle concentration (i.e. number of particles per

unit volume).

It is therefore important to choose an interaction volume VI that is phe-
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nomenologically accurate to estimate the particle concentration per unit vol-

ume. The volume of interaction defines the spatial region where the contained

particles are allowed to interact, i.e. aggregate. Particles outside this spatial

interaction volume cannot interact with those within VI .

For example, Nijdam et al. (2004) use the model of Ruger et al. (2000)

to calculate the collision frequency between two parcels with a given relative

velocity vrel nd relative volume of interaction VI = b1x
3
rel, where xrel is the

relative distance between the parcels. The parameter b1 is arbitrarily chosen,

assuming a relation between the interacting volume and that of a sphere with

a diameter equal to the inter-parcel distance. Guo et al. (2003) use b1 = 5

to perform a base calculation and alter the value in a trial and error process.

The two parcels merge if the calculated collision probability is greater than

a critical value.

Zhao and Zheng (2013) couple the differentially weighted MC method

of Zhao et al. (2009) and Zheng (2011) with a turbulent flow field. They

assume that VI = Vcell and define a ‘full coagulation rule’ whereby all the

real particles of a parcel i collide instantaneously with the most probable

partner j given that i contains less particles than j. The aggregation event

is modelled using an accept/reject probabilistic coagulation rule in which

a random number is generated and compared to a probability Paggr,i. The

probability Paggr,i is modelled as a Poisson distribution with a mean rate

equivalent to the sum of all collision rates within Vcell, namely C ′i =
∑

j C
′
ij.

The prime indicates that the rate is modified according to the full coagulation

rule of Zhao et al. (2009). All of the collisions are included in a single

aggregation event with the most probable partner j of parcel i. The partner

9
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is selected either using a cumulative probabilities method Liffman (1992) or

with an acceptance-rejection method Lin et al. (2002).

A particle cloud (parcel), where an ensemble of real particles is repre-

sented by a single mean position, has the intrinsic disadvantage that the

volume of the parcel depends on the internal spatial dispersion of the real

particles. The level of internal dispersion may increase due to turbulence or

decrease due to aggregation events. Litchford and Jeng (1991) suggest that

each parcel position is represented by a normal distribution with a mean µ

and standard deviation σ, which is representative of the parcel radius and is

expressed in terms of a two-particle velocity correlation function. Alterna-

tively, Johannessen et al. (2001), modelled the effects of the flow field on the

parcel by a ‘dilution’ factor.

The selection of the time-step ∆t for the integration of Eq. (2) should

not influence the aggregation process. To de-couple the aggregation process

from the dispersion process, the ∆t should be small enough that the relative

distance between parcels does not change significantly within the time step

(this can be achieved by applying a CFL-type condition when VI = Vcel).

To accurately capture aggregation, the collision events should be in theory

treated sequentially, since the kernels βij = βij(υi, υj) change after every

event. In practice, a residence time τaggr is defined, see work by Zhao and

Zheng (2013), which corresponds to the maximum coagulation rate of a parcel

in a cell, τaggr = 1/maxi(VcellC
′
i). If ∆t > τaggr then the aggregation is

divided into sub-steps ∆taggr < τaggr, where the rates are recalculated and

aggregation events applied.

10
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3. Numerical Modelling

3.1. The Spray-PDF Equation

In the context of inertial particle dispersion, Williams (1958) introduced

a conservation equation for the particle distribution function. The particle

distribution function consists of the joint probability of the realization of M

variables that represent the state of the particulate phase: e.g. position,

velocity, temperature, size, etc. For a set of M independent variables the

state vector of the jth particle for a given location in space x and time t

is Φj = {φj1(x, t), ..., φjM(x, t)}. The spray-pdf describes the evolution of

the the phase space Ψ of the random variables ψi (with realizations Φj for

every j-indexed particle) of an ensemble of N particles. The mathematical

formulation of the spray-pdf equation lies outside the scope of this work; the

interested reader may refer to the original work by Klimontovich (1969) and

Bini (2006).

By equivalence, the spray-pdf can be reformulated as a trajectory problem

to describe the evolution of the random variables ψi=1...M , for a set of j-

indexed stochastic parcels (samples), with a set of Stochastic Differential

Equations, for a complete description see Pesmazoglou et al. (2013, 2014) :

dψji = Ai(Ψ)dt+Bik(Ψ)dWt,k + Ji(Ψ)δN j,λ
dt . (3)

where Ai is the drift term, Ji the jump term, and δN j,λ
dt is the jth increment of

a stochastic counting process of rate λ. Any continuous random forcing can

be added both to the spray-pdf and the trajectory problem with a Brownian

diffusion term quantified by an equivalent diffusion tensor Bik.

11
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In the present work, aggregation is investigated in a Lagrangian frame-

work for particle populations that render the numerical representation of all

particles on a one-to-one (particle to parcel) basis intractable. Each numeri-

cal parcel represents a set of real particles with the same average trajectories.

3.2. Aggregation Model

Aggregation is incorporated into the spray-pdf by the addition of particle

number concentration and volume (or diameter assuming constant particle

density) in the set of Lagrangian equations described by Eq. (3). In aggrega-

tion processes, the number of real particles and the average size represented

by a parcel do not remain constant; and both change due to inter-particle

interactions. Therefore a Lagrangian trajectory for each property has to be

formulated and solved.

The analysis that follows focuses on particles in the nano-scale range, for

which the Brownian aggregation mechanisms dominate, and the respective

aggregation kernels depend on particle concentration (which is of Eulerian

nature). The particle concentration can be obtained by the approach of Jo-

hannessen et al. (2001), where the trajectory directly represents the particle

concentration of a stochastic parcel. Alternatively, the real particle number

of a parcel can be traced and the equivalent concentrations for the evaluation

of the Brownian kernels can be retrieved by defining a volume of interaction

VI (see Section 2.1.1).

In the Lagrangian context of this work, the real particle population per

parcel is tracked in order to maintain a more intuitive representation of the

particulate phase and to allow for a direct extension of the spray-pdf. The

12
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following stochastic trajectory is therefore formulated:

dnint = −ṅcolldt, (4)

where nint is the number of real particles in a given parcel, ṅcoll is the rate

of collisions of real particles of the parcel. The number of collisions ncoll that

cause a change dnint in a given time dt is modelled along the lines of a jump

process with time increments dt and a mean rate τaggr.

The parcel concentration is defined as:

np(t) =
nint(t)

VI
, (5)

and the Eulerian particle number concentration for a certain sample volume

Vsamp centered at a position x is:

Nc(x, t) =

∀i∈Vsamp∑

i=1

nint,i
Vsamp

, (6)

For simplicity the sampling volume is chosen to be that of a cell, i.e. Vsamp =

Vcell.

The volume of interaction VI for the aggregation process is modelled by

a cloud-cuboid (see two-dimensional sketch in Figure 1). The interaction

volume between two parcels i, j is equal to the length of the two aligned

parcels multiplied by a height and width equal to that of the largest parcel,

viz. :

VI,ij =
1

2
(rc,i + 2xrel + rc,j)max(rc,i, rc,j)

2. (7)

Note that conceptually the interaction volume defines a certain spatial

region wherein real particles aggregate. In essence, the number of particles

13
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Figure 1: Interaction volume of two interacting parcels i, j. The interaction volume is

indicated by the dashed line.

14
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divided by the equivalent interaction volume define the local concentration

of particles (#/m3). Particles that lie outside this volume are considered

passive (physically too far to collide within a time-step).

To estimate the side of each parcel cube, rc, particle dispersion inside the

parcel is assumed to behave similarly to molecular diffusion in the carrier

phase. The cube side is then

rc = n
1
3
intKnfdp, (8)

where Knf is the Knudsen number of the carrier-fluid phase (based on mean

free path, `, and molecule size) and dp is the mean particle diameter. The

mean distance between each particle is clearly Knfdp. If the particle dis-

persion within a parcel is primarily due to Brownian diffusion, the equiva-

lent parcel size must be smaller than the smallest fluid carrier mixing-scale

rc < lB, where lB = ηk/Sc1/2 is the Batchelor scale; with ηk the Kolmogorov

scale and Sc the Schmidt number of the carrier phase.

The aforementioned assumption sets a maximum limit to the number of

internal particles in the parcel, namely:

nint,max ≤ max

[(
lB

Knfdp

)3

, 1

]
(9)

Figure 2 displays the maximum number of particles per parcel versus

diameter, for nanoparticle dispersion in ambient air. This limit of course, has

to be offset by the computational demands of the simulation and upper/lower

limits can be set.

The diffusion mechanism of nano-particles in fluids is different from both

the Brownian motion and the molecular mechanisms and strongly depends

15



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 50  150  250  350  450  550  650

n i
nt

 

dp   [nm]

Figure 2: Maximum number of real particles represented by one parcel as a function of

particle diameter. With ηk = 0.28 mm, Sc=1 and Knf=air = 170

on the particle diameter. For small nano-particles, dp ∼ `, the particles

can be considered in the free-molecular regime and their diffusion dynamics

approximated by the Chapman-Enskog theory, see Li and Wang (2003). For

larger particles, the diffusion coefficient can be determined by the Einsten-

Stokes relation, that predict values as low as 10−9 m2/s. For such small

diffusivity coefficients, Sc >> 1 and Eq. (9) predicts nint,max = 1.

The nint,max limit offers a number of advantages from a phenomenological

perspective:

• Particles inside the parcel are not influenced by vortical motions and

their concentration can be considered analogous to that of molecules

in the gas phase (gravitational effects can be considered negligible).

• The relative internal parcel dispersion will not increase due to fluid

16
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structures and the particles will be transported as an ensemble.

• Nanoparticles PSD usually have log-normal distributions wherein large

diameters have low populations, this is reflected in the limit (9)

In the present multi-collision model, the particles of a parcel may collide

with a number of different parcels. If every collision event created an addi-

tional parcel, then the number of parcels in the simulation would increase to

an intractable number. Therefore, it is assumed that the aggregated particles

from a colliding parcel-pair are added to one of the two colliding parcels. The

parcel that has the larger mean particle diameter accommodates the aggre-

gated particles and is termed ‘receiver’ whereas the other parcel is termed

‘donor’. To simplify the multi-collision process the further assumption is

made:

• More than one donor particle may collide with a single particle of the

receiver parcel but not vice-versa.

This assumption suggests that if a large population of small particles

(represented by a donor parcel i) interacts with a few large particles (receiver

j), the large particles may experience more than one collision event; the

number of collisions ncoll,ij may be greater than nint,j. However, the total

number of collision events is limited to the internal population of the donor

parcel, i.e. for the same notation of i, j parcels:

∀j∈Vcell∑

j

ncoll,ij = min

(∀j∈Vcell∑

j

ncoll,ij , nint,i

)
. (10)

The suggested approach prevents collisions from being double counted since

although βij = βji, the number of collisions ncoll,ij 6= ncoll,ji. The compu-

17
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tational advantage of this method is that a second loop to find the most

probable partner is not required; and array operations can be employed by

formulating the tensor ncoll,ij.

The novelty in the proposed model is that the particles are allowed to

collide with any set of particles (including particles within the same parcel)

within Vcell instead of colliding with a single most probable partner. The

size of the newly-formed aggregates is described by the ensemble average

size (average over total internal particles) of the receiver parcel and if insuf-

ficient events are simulated, a poly-disperse PSD may be smoothened. The

condition of Eq. (9) partly mitigates such errors as parcels with large-size

particles have lower nint.

The collision tensor ncoll,ij gives the number of collision events that occur

between parcel i and parcel j. A probabilistic approach is used for the

simulation of such events, whereby the probability of ncoll,ij collisions to take

place between two parcels i and j within a volume VI and in a time interval

t is given by:

Paggr(ncoll,ij, t) =
1

ncoll,ij

t

τaggr
, (11)

where τaggr is the aggregation residence time:

τ−1
aggr =

βijnint,inint,j
VI

. (12)

A linear increase of probability with t is assumed and the measure Paggr(ncoll,ij, t)
is the CDF representing the probability of ncoll,ij events to occur at any time

in the range [0 : t]. The division by ncoll,ij normalizes the probability to a

maximum of Paggr(ncoll,ij, t) = 1 for any number of collision events. Note

that VI may be equal to Vcell for any i, j pair, or evaluated separately for

each i, j pair using Eq. (7).
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By sampling a random number, Rn, from an uniform distribution in the

range 0→ 1, the equivalent ij element of the collision tensor for a time-step

∆t is constructed as :

ncoll,ij =





floor
(

∆t
τaggr

+Rn
)
, if υi < υj

0, otherwise

(13)

The function ‘floor’ produces the integer part of a real number. Equation

(13) states that the total number of collisions in the direction i → j during

an elapsed time ∆t for υi < υj is equal to the integer (or definite) number of

collisions plus the floor of the sum of the remainder and Rn. If for example

Paggr(1,∆t) = ∆t/τaggr = 0.8 then there is an 80% probability that Rn ≥ 0.2

and therefore that a collision will take place. Note that ncoll,ji = 0 if υi > υj.

To optimize the number of operations required and also to include the cases

where υi = υj without double-counting, the collision array ncoll,ij (13) for all

pairs i− j and internal collisions i− i is constructed using a particle sorting

algorithm per cell.

To ensure that the aggregation events are sufficiently resolved in time,

the time-step limit of Zhao and Zheng (2013) is used:

∆taggr ≤ min
∀ i ∈ Domain



(∀ j ∈ Vcell∑

j

βijnint,inint,j
VI,ij

)−1

 . (14)

This criterion implies that the time-step is limited by the maximum total

aggregation rate of all parcels in the domain.

Figure 3 summarizes the collision events graphically. Some of the small-

size particles of the donor parcel (blue in the online version) collide with, and

therefore are added to, the total mass of the receiver/donor parcel (grey in the
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Schema'c	  of	  volume	  addi'on	  

parcel	  i	  (donor)	  

Before	  collision	  

A8er	  collision	  

Figure 3: The mass exchange and collision events assuming that donor parcels always

contain smaller particles than receiver parcels.
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online version) The internal number of particles of the donor/receiver parcel

remains unchanged and therefore their average mass increases. However, the

size of the particles of the donor parcel remains the same, since the outward

mass-flux is balanced by a decrease in the internal number of particles. The

parcel undergoes a number of internal collisions, which do not change its

total mass, but since the internal number of particles drops, the average

mass per particle increases, and so does their average size (assuming constant

density). The collisions with the larger particles of the receiver parcel (green

in the online version of Fig. 3) cause a net outward flux of mass from the

donor/receiver parcel towards the receiver parcel. Although the total mass

of the receiver/donorparcel drops, the average mass of the internal particles

is unchanged as the population of the parcel also decreases. Finally, the

receiver parcel will increase its total and average mass as nint is constant.

For every parcel i the effect of the collision events are incorporated to

the equivalent trajectories of each partner j. Note that a constant particle

density ρp is assumed for all the following calculations.

The change in particle mean volume of a parcel j is updated using a

weighted sum of the colliding particle volumes (see schematic in Fig. 3). It

is therefore assumed that each particle of the receiver parcel will increase in

average size according to:

[dυj]aggr,ij =
ncoll,ij
nint,j

υi (15)

Therefore the equivalent trajectory for the average parcel volume of the re-

ceiver j due to collisions with all donor parcels i is:

dυj =
∑

∀i∈Vcell
[dυj]aggr,ij. (16)
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Finally, having updated the aforementioned properties, the new internal par-

ticle number of each parcel is updated according to:

dnint,i = −
∑

∀j∈Vcell
ncoll,ij. (17)

Figure 4 is a flow-chart which briefly outlines the aforementioned method-

ology. Assuming that within the CFD time-step the particles do not change

cells, the aggregation process can be readily re-iterated for a shorter time-

step following the steps outlined previously. A separate sensitivity test for

the aggregation time-step was carried out in stationary (no flow) conditions.

In its generality, the outlined multi-collisional approach for stochastic parcels

can be used with different aggregation mechanisms and kernel modifications

to include a fractal shape.

4. Results

For the preliminary validation and development of the aggregation model

outlined in section 3.2, the analytic solutions of the PBE for two aggregation

kernels are used. The aim is to investigate the performance of the multi-

collision model with respect to particle concentration depletion, particle to-

tal mass conservation, and the PSD evolution. In addition, the influence on

the aforementioned statistics of the aggregation time-step ∆taggr and inter-

nal particles per parcel nint selected is investigated. The particle depletion

process is investigated using a constant aggregation kernel βij = βc and the

PSD evolution using both a constant and a sum kernel βij = βc(υi+υj), also

termed the Golovin (1963) kernel. The simulation time varied from a few

CPU minutes to 40 CPU hours in the cases with the smallest number of real

particle per parcel (termed ’finest’ cases).
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Figure 4: Flow chart of multi-collision aggregation model.
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4.1. Particle depletion due to aggregation

For the uncoupled PBE, with a constant aggregation kernel, an equation

for the total particle concentration Nc can be retrieved by summing over all

the classes of Eq. (2), by:

dNc

dt
=

∞∑

k=1

1

2

∑

i+j=k

βcNc,iNc,j −
∞∑

k=1

Nc,k

∞∑

i=1

βcNc,i

=
βc
2

∞∑

k=1

∑

i+j=k

Nc,iNc,j − βcN2
c

= −βc
2
N2
c . (18)

Integration of the above expression yields:

Nc(t) =
N0

1 + t∗
(19)

Where N0 is the initial particle concentration at t = 0 and t∗ = t/τ ′aggr is

a dimensionless time with τ ′aggr = 2/(βcN0) (different from the aggregation

residence time of Eq. (12). For the complete derivation, the reader can refer

to Friedlander (2000).

Making use of Eq. (18), it is possible to investigate the proposed MC

aggregation model with respect to total particle depletion and mass conser-

vation. For every parameter investigated, a minimum of sn,tot ≥ 10 simu-

lations were carried out to investigate convergence and performance. The

ensemble-averaged errors for a generic variable φ are defined as:

〈|εφ|〉sn =
1

sn,tot

sn,tot∑

sn=1

φanalytic − φMC,sn

φanalytic
(20)

For simplicity, the dimensionless ratio of initial internal parcel population
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Figure 5: Total particle concentration versus dimensionless time for the same initial par-

ticle concentration using n∗0 = 2.5% and 25%.

nint to initial particle population N0Vcell is defined as:

n∗0 =
nint|t=0

N0Vcell
. (21)

Figure 5 compares the analytic solution of the particle depletion for two

cases. In the first case the initial concentration N0 is represented by parcels

with an internal population equivalent to n∗0 = 2.5 %, whereas in the second

case n∗0 = 25 % (e.g. for a total of 1000 particles the first case has parcels

with nint = 25 and the second has parcels with nint = 250). From Fig. 5 it is

clear that neglecting internal collisions may lead to significant errors in the

particle depletion statistics; 〈|εNc |〉 ∼ 200% and 8% for the n∗0 = 25 % and

2.5% cases respectively.

Figure 6 shows the variation of particle concentration including internal

collisions for four different initial nint, namely: n∗0 = 25%, 2.5%, 0.25% and

nint = 1. Good agreement is found with the analytic solution for all four

cases. Comparing Figs. 5 and 6, it becomes clear that internal collisions
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Figure 6: Total particle concentration versus dimensionless time for the same initial par-

ticle concentration using n∗0 = 25%, 2.5%, 0.25% and nint = 1.
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Figure 7: Error levels for different parcel internal populations nint.

need to be included, when parcels representing many physical particles are

used, in order to accurately capture the depletion statistics. These results

suggest that the initial parcel internal population does not affect the depletion

characteristics when a constant aggregation kernel is used1.

Figures 7a and 7b show the error, see Eq. (20), in total particle concen-

tration and in total particle mass, respectively. Once the rate of depletion

d(Nc/N0)/dt is very low, the steady-state concentration error 〈|εNc |〉 is 0−2%

for all initial nint investigated. The mass error 〈|εmass|〉 for all cases where

nint > 1 exhibits a similar monotonic increase with time. However, the ab-

1Note that a constant kernel suggests that a single parcel could represent the total

population of particles. Since at this point the PSD evolution is not considered, it is

therefore expected that the mean volume and number concentration characteristics that a

single parcel depicts are sufficient to represent the particle depletion process for a constant

kernel.
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solute error does not exceed 0.3% and is negligible in systems with a low

aggregation residence time. In the case where nint = 1, the error is virtually

zero. The mass error probably stems from rounding-off errors that appear

due to the weighted update of the parcel volumes; see Eq. (15). Round-

off errors accumulation also explains the observed monotonic increase of the

mass error (see Fig. 7b)

In the simulations, the dimensionless time-step ∆t∗aggr = ∆taggr/τ
′
aggr is

of the order of 10−3. Figure 8 presents the variation of particle concentration

with ∆t∗aggr in the range 10−1 − 10−5. The largest discrepancies between the

analytic and MC concentrations are for the coarsest temporal discretization.

For ∆t∗aggr ≤ 10−2, the particle concentration evolving in time is accurately

represented by the model. The following empirical stability condition can be

then used to de-couple the aggregation process:

∆t < αaggrτ
′
aggr, (22)

where αaggr ∼ O(10−2).

Figure 9a shows the error in total particle concentration for different ag-

gregation time-steps. The concentration error seems to be fairly unaffected

by the temporal discretization for ∆t∗aggr ≤ 10−2 and it is at the same lev-

els of Fig. 7a. Therefore, for a particle depletion level of 80%, an 0-2%

concentration error is due to the MC methodology. As opposed to nint, a

coarse temporal discretization (i.e. the equivalent of ∆t∗aggr ≈ 10−1) has a

pronounced effect on the evolution of the particle concentration. The ag-

gregation rate is overestimated leading to an underestimation of the particle

concentration Nc. Arguably, a more conservative limit for the time-step than

Eq. (22) should be used when the kernels are also a function of the particle
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Figure 8: Total particle concentration versus dimensionless time for the same initial par-

ticle concentration using ∆t∗aggr = 10−1, 10−2, 10−4, and 10−5 and with n∗0 = 1.0%.

29



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

0E+00

2E-03

4E-03

6E-03

8E-03

1E-02

 0  1  2  3  4  5  6  7  8  9  10  11  12
 0

 1

 2

 3

 4

 5

-d
(N

c/
N

0)
/d

t

|ε
N

c|  
 [%

]

t*

d(Nc/N0)/dt
% Nc error ∆t*-O(10-1)

-O(10-2)
-O(10-4)
-O(10-5)

(a) Rate of particle depletion (left)

Concentration error (right).

 0

 0.25

 0.5

 0.75

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12
 0

 0.1

 0.2

 0.3

 0.4

1-
N

c/
N

0

|ε
m

as
s|

   
[%

]

t*

Level of deplation
% Mass error ∆t*-O(10-1)

-O(10-2)
-O(10-4)
-O(10-5)

(b) Level of particle depletion (left)

Mass error (right).

Figure 9: Error levels for different temporal discretization.

volume.

Figure 9b shows the error in total particle mass for different aggregation

time-steps. Qualitatively the error shows a similar monotonic increase as

see in Fig. 7b. Nevertheless, mass errors are at negligible levels for both

temporal and parcel internal particle number discretization.

4.2. Evolution of the Particle Size Distribution

The model has exhibited good agreement with mean population values,

with only a weak dependency on the choice of the initial nint and ∆t∗aggr.

However, it is important to investigate the effect of the aforementioned pa-

rameters with respect to the evolution of a full PSD. To this end, analytic

solutions for the temporal evolution of the PSD of an aggregating population

of particles are used. An initial PSD is assumed:

N (υ)|t=0 =
N0

υ0

exp(−υ/υ0), (23)
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where υ0 is the initial count mean particle volume.

To enable a comparison between different nint, the initial particle popula-

tion is constant and equal to N0Vcell = 1000. For every nint-case investigated,

the simulation is repeated 450 times until the total number of initialised real

particles is equal to 4.5 · 105. Note that the number of total parcels/samples

initialised decreases with nint, i.e. a total of 0.018, 0.18, 1.8 and 4.5 · 105

parcels are initialised for the n∗0 = 25%, 2.5%, 0.25% and nint = 1 cases,

respectively. The resulting PSDs from a given case are constructed from the

cumulative number of parcels present at the prescribed time-instances after

every simulation.

This cumulative sampling can be considered representative of the PSD

of a total sn cells used to discretize a domain with a given initial particle

concentration N0 and particle size distribution N (υ, 0).

To quantify the error , the cumulative Sauter Mean Diameter (SMD) is

calculated for every simulation as:

d32 =

∑∞
k=1N (υk)υk∑∞
k=1N (υk)υ

2/3
k

, (24)

and it represents a higher-order moment ratio with the dimensions of particle

diameter.

4.2.1. Constant kernel βij = βc

Scott (1968) derived analytically the solution for Equation (23), where

the PSD as a function of time for a constant aggregation kernel βc is given

by:

N (υ, t) =
4N0

υ0(βcN0t+ 2)2
exp

[ −2υ

υ0(βcN0t+ 2)

]
. (25)
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For simplicity the initial concentration N0, particle mean volume υ0, and

aggregation kernel βc are chosen to be 1.

Following the work of Rigopoulos and Jones (2003), the PSD is evolved in

time for 10 and 20 seconds (t∗ = 5, 10). These residence times correspond to

depletion levels of 82% and 90%. The time discretization is fixed to ∆t∗aggr =

10−4 and the initial parcel concentration nint is varied.

Figure 10 presents the PSD at t = 0, 10 and 20 s for four choices of initial

parcel internal population, namely: n∗0 = 25%, 2.5%, 0.25% and nint = 1.

From an order of magnitude perspective the model performs well indepen-

dently of the choice of nint. For n∗0 ≤ 0.25% the PSD agrees very well with

the analytic equivalent at the times considered. For larger internal parcel

populations (n∗0 = 2.5% and 25%) there is a bias towards larger sizes, and a

non-physical peak is found at υ ≈ 10.

The source of this discrepancy depends on the intrinsic error in the so-

lution procedure, but also on the error in the initial PSD discretization. As

noted, this error relates to the total number of samples (i.e. parcels) used to

discretize the size distribution of the initialised real particle population. In

the case of Fig. 10, where each parcel represents 25% of the concentration

N0, the ‘linear’ sets of points at t = 0 represent exactly the aforementioned

error. Every volume in the range of υ/υ0 = 6 → 10 is, for example, repre-

sented by a single parcel. If the initial PSD is not captured accurately, the

errors propagate to the subsequent distributions as the aggregation process

progress.

Figure 11 summarises the percentage absolute error in the simulated SMD

for the various initial nint and aggregation residence times. In all of the
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Figure 10: Evolution of the PSD for an initial exponential distribution for n∗0 = 25%,

2.5%, 0.25% and nint = 1.
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Figure 11: Relative error in the SMD for three residence times t =0, 10, and 20s for

different cases of initial parcel internal population.

cases the SMD of the initial PSD converges to less than 1% of the analytic

equivalent. At aggregation residence times of t =10 and 20s, the coarsest

cases where n∗0 ≥ 2.5% exhibit an error which does not exceed |εSMD| ≈ 4%.

In the finer cases (n∗0 = 0.25% and nint = 1) the errors are |εSMD| ≤ 1.3%.

Finally, from Figs. 10 and 11, a choice of n∗0 ∼ O(10−1%) reproduces

accurately the analytic solution for the PSD evolving with a constant kernel.

For n∗0 = 25% the evolution of the mean particle concentration and SMD

are captured with an error of less than 2.5% and 4.5%, respectively.

4.2.2. Golovin kernel βij = βc(υi + υj).

The Golovin kernel βij = βc(υi + υj) is proportional to the interacting

particle volumes. Golovin (1963) derived an analytic solution for an initial

particle population with exponentially-distributed volumes; see Eq. (23).

The temporal evolution of the PSD with the aforementioned initial condition
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reads:

N (υ, t) =
(1− θ)exp

[
− υ
υ0

(θ + 1)
]

υ
υ0
θ1/2

I1

(
2
υ

υ0

θ1/2

)
, (26)

where θ = 1 − exp(−βcN0υ0t) and I1 is the first order Bessel-I function.

Same parameters as the constant kernel case have been chosen. The PSD is

evolved in time for 0.5 and 2.0 s (as in the work of Rigopoulos and Jones

(2003)), equivalent to a 40% and an 86% particle depletion. The temporal

discretization is fixed to a normalized time-step of ∆t∗aggr = 10−6 (based

on υi + υj = 1), which was found sufficient to uncouple the aggregation

process. As opposed to the constant kernel, a large number of simulations

were performed such that the initial PSD is accurately captured, within

|εSMD| ≤ 0.5%, in order to isolate the aggregation model performance.

Figure 12 shows the PSD for three residence times and four cases of

initial parcel internal population, the results agree very well with the analytic

solution. The n∗0 = 25% case reproduces accurately the initial distribution

and the evolved PSD at t = 0.5 s. However, at t = 2 s the number of

smaller particles are slightly over-estimated. For the smaller n∗0 cases the

model captures the analytic PSD at all times.

When compared to the results from the constant kernel (Fig. 10), the

resolution of the initial particle distribution is very important as it sets the

boundary condition for the evolution of the PSD. In addition, in the case

of the constant kernel, small particles aggregate with the same kernel-value

as larger particles, and due to their higher concentration smaller particles

aggregate with a higher probability than larger ones. This leads to a more

uniform distribution (depletion) of sizes in the range of υ/υ0 < 10. On

the other hand, the Golovin kernel has a non-linear effect on the PSD, as
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Figure 12: Evolution of the PSD with the Golovin kernel for an initial exponential distri-

bution and n∗0Vcell = 25%, 2.5%, 0.25% and nint = 1.
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Figure 13: Relative error in the SMD for three residence times t =0, 0.5, 2 s for different

cases of initial parcel internal population (n∗0 =25%, 2.5%, 0.25% and nint = 1, numbered

one to four, respectively)

larger particles have higher kernel values. The combined effect leads to a

less uniform decay of populations. In fact the smallest class, where υ = 0.1,

has a density of 0.07 after an 86% particle depletion, whereas the density

from the constant kernel after an 82% depletion level is 0.03. In the Golovin

kernel there is an intrinsic directionality in the aggregation process, where

smaller particles tend to aggregate more with larger particles rather than

with particles of similar volumes. This process is inherently captured in

the present aggregation model, where small particles aggregate with large

particles and so forth.

Figure 13 shows the resulting errors in the SMD calculated using Eq.

(24). For a residence time of t = 0.5 s the SMD is captured within an error

of |εSMD| < 2% and for t = 2.0 s the SMD is predicted within |εSMD| < 1%

for the two fine cases. The coarser cases have approximately the same level of

error after t = 0.5 s as only a small amount of the initial particle population
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has been depleted. For a longer residence time (t = 2.0 s) the error in the

SMD increases for the coarsest cases. Nevertheless, even for the coarsest case

where n∗0 =25%, the model predicts the shape of the PSD as seen in Fig. 12

with a relatively small error.

5. Conclusions

In the present work, a new stochastic model has been presented to simu-

late the aggregation process. The proposed model allows for a simple multi-

collision implementation, where each particle of a numerical parcel can ag-

gregate with any other parcel of a ’computational’ cell. The model can be

directly coupled to an unsteady CFD solution.

In a CFD-coupled simulation, the aggregation event is modelled for every

time-step and computational cell. The concentration and properties of a

parcel are updated from the previous time step with the corresponding spatial

dispersion.

The model was validated against analytic solutions of different aggrega-

tion kernels, and it was shown that the inclusion of internal collisions for

every parcel is required to accurately represent the particle depletion pro-

cess. The mass errors are at negligible levels for both temporal and parcel

internal-particle-number discretization. In addition, a heuristic stability con-

dition was suggested in Eq. (22) to de-couple the aggregation process from

the temporal discretization.

The model reproduces the analytic PSD evolution using both the constant

and the Golovin aggregation kernels, with SMD errors below 5% in the worse

scenarios, even if the PSD extends four orders of magnitude in both class and
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particle density. The results suggested that an initial particle population of

nint ≈ 0.25N0Vcell% is necessary to resolve the evolution of the PSD with

a constant kernel. Higher resolution could be obtained by appropriately

discretizing the PSD regions with lower densities.
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