67 research outputs found

    Revising the WHO verbal autopsy instrument to facilitate routine cause-of-death monitoring.

    Get PDF
    OBJECTIVE: Verbal autopsy (VA) is a systematic approach for determining causes of death (CoD) in populations without routine medical certification. It has mainly been used in research contexts and involved relatively lengthy interviews. Our objective here is to describe the process used to shorten, simplify, and standardise the VA process to make it feasible for application on a larger scale such as in routine civil registration and vital statistics (CRVS) systems. METHODS: A literature review of existing VA instruments was undertaken. The World Health Organization (WHO) then facilitated an international consultation process to review experiences with existing VA instruments, including those from WHO, the Demographic Evaluation of Populations and their Health in Developing Countries (INDEPTH) Network, InterVA, and the Population Health Metrics Research Consortium (PHMRC). In an expert meeting, consideration was given to formulating a workable VA CoD list [with mapping to the International Classification of Diseases and Related Health Problems, Tenth Revision (ICD-10) CoD] and to the viability and utility of existing VA interview questions, with a view to undertaking systematic simplification. FINDINGS: A revised VA CoD list was compiled enabling mapping of all ICD-10 CoD onto 62 VA cause categories, chosen on the grounds of public health significance as well as potential for ascertainment from VA. A set of 221 indicators for inclusion in the revised VA instrument was developed on the basis of accumulated experience, with appropriate skip patterns for various population sub-groups. The duration of a VA interview was reduced by about 40% with this new approach. CONCLUSIONS: The revised VA instrument resulting from this consultation process is presented here as a means of making it available for widespread use and evaluation. It is envisaged that this will be used in conjunction with automated models for assigning CoD from VA data, rather than involving physicians

    Subjective and objective measures

    Get PDF
    One of the greatest challenges in the study of emotions and emotional states is their measurement. The techniques used to measure emotions depend essentially on the authors’ definition of the concept of emotion. Currently, two types of measures are used: subjective and objective. While subjective measures focus on assessing the conscious recognition of one’s own emotions, objective measures allow researchers to quantify and assess the conscious and unconscious emotional processes. In this sense, when the objective is to evaluate the emotional experience from the subjective point of view of an individual in relation to a given event, then subjective measures such as self-report should be used. In addition to this, when the objective is to evaluate the emotional experience at the most unconscious level of processes such as the physiological response, objective measures should be used. There are no better or worse measures, only measures that allow access to the same phenomenon from different points of view. The chapter’s main objective is to make a survey of the main measures of evaluation of the emotions and emotional states more relevant in the current scientific panorama.info:eu-repo/semantics/acceptedVersio

    Avaliação das práticas diferenciais de amamentação: a questão da etnia

    Get PDF
    Breastfeeding practices in two Brazilian metropolitan areas (S. Paulo and Recife) are described, as part of a study carried out in 1987. In a random sample of healthy 0-8 month old infants, selected from all health care units, higher breastfeeding rates were found in S. Paulo (initiation, prevalence, median and average) than in Recife. The mean duration of breastfeeding, mixed and full, was of 127.5 and 66.6 days, respectively, for S. Paulo, and of 104.4 and 31.7 days for Recife. When data are analysed according to ethnic group, white S. Paulo women breastfeed more than white Recife women. Full breastfeeding rate is more prevalent among white and "mulato" S. Paulo women. However, when the data were analyzed for each city separately, it was found, remarkably, that the non-whites breastfeed more than the whites. In Recife, full breastfeeding is particularly low in whites (of 15.3 days median) and "mulatos" (of 16.7 days), but of 34.5 days in blacks. The study points out the need for greater in-depth investigation of the issue of ethnicity and infant feeding practices, still inadequately understood in world literature.Descreve-se a situação da prática de amamentar em duas áreas metropolitanas brasileiras: São Paulo e Recife, Brasil, em estudos conduzidos em 1987. Em amostras representativas da população de crianças saudáveis de 0-8 meses atendidas pelo sistema de saúde, nota-se que é maior em São Paulo a proporção das mães que iniciam a amamentação e a prevalência de amamentados. A duração média do aleitamento materno total (AM) e quase exclusivo (AE) é respectivamente de 127,5 e 66,6 dias em São Paulo. Em Recife, 104,4 e 31,7 dias, respectivamente, para AM e AE. Estudaram-se também os dados de amamentação conforme a cor da pele da mãe, concluindo que se amamenta mais em São Paulo do que em Recife, significativamente entre brancas. O aleitamento materno quase exclusivo é praticado mais em São Paulo do que em Recife, por brancas e pardas. Observando-se os grupos étnicos em cada uma das cidades, notou-se que são as mulheres não-brancas (pretas e pardas) aquelas que amamentam mais, sendo particularmente baixo o aleitamento quase exclusivo em Recife, maior entre as pretas (34,5 dias de mediana de AE) comparado a 15,3 dias entre brancas e 16,7 entre pardas. O estudo aponta para a necessidade de se elaborar desenhos de pesquisa que levem em conta a questão da etnia e a amamentação, questão não respondida pela literatura em nível mundial

    The impact of multimorbidity on adult physical and mental health in low- and middle-income countries: what does the study on global ageing and adult health (SAGE) reveal?

    Get PDF
    BACKGROUND: Chronic diseases contribute a large share of disease burden in low- and middle-income countries (LMICs). Chronic diseases have a tendency to occur simultaneously and where there are two or more such conditions, this is termed as 'multimorbidity'. Multimorbidity is associated with adverse health outcomes, but limited research has been undertaken in LMICs. Therefore, this study examines the prevalence and correlates of multimorbidity as well as the associations between multimorbidity and self-rated health, activities of daily living (ADLs), quality of life, and depression across six LMICs. METHODS: Data was obtained from the WHO's Study on global AGEing and adult health (SAGE) Wave-1 (2007/10). This was a cross-sectional population based survey performed in LMICs, namely China, Ghana, India, Mexico, Russia, and South Africa, including 42,236 adults aged 18 years and older. Multimorbidity was measured as the simultaneous presence of two or more of eight chronic conditions including angina pectoris, arthritis, asthma, chronic lung disease, diabetes mellitus, hypertension, stroke, and vision impairment. Associations with four health outcomes were examined, namely ADL limitation, self-rated health, depression, and a quality of life index. Random-intercept multilevel regression models were used on pooled data from the six countries. RESULTS: The prevalence of morbidity and multimorbidity was 54.2 % and 21.9 %, respectively, in the pooled sample of six countries. Russia had the highest prevalence of multimorbidity (34.7 %) whereas China had the lowest (20.3 %). The likelihood of multimorbidity was higher in older age groups and was lower in those with higher socioeconomic status. In the pooled sample, the prevalence of 1+ ADL limitation was 14 %, depression 5.7 %, self-rated poor health 11.6 %, and mean quality of life score was 54.4. Substantial cross-country variations were seen in the four health outcome measures. The prevalence of 1+ ADL limitation, poor self-rated health, and depression increased whereas quality of life declined markedly with an increase in number of diseases. CONCLUSIONS: Findings highlight the challenge of multimorbidity in LMICs, particularly among the lower socioeconomic groups, and the pressing need for reorientation of health care resources considering the distribution of multimorbidity and its adverse effect on health outcomes

    Affective computing in virtual reality: emotion recognition from brain and heartbeat dynamics using wearable sensors

    Get PDF
    [EN] Affective Computing has emerged as an important field of study that aims to develop systems that can automatically recognize emotions. Up to the present, elicitation has been carried out with nonimmersive stimuli. This study, on the other hand, aims to develop an emotion recognition system for affective states evoked through Immersive Virtual Environments. Four alternative virtual rooms were designed to elicit four possible arousal-valence combinations, as described in each quadrant of the Circumplex Model of Affects. An experiment involving the recording of the electroencephalography (EEG) and electrocardiography (ECG) of sixty participants was carried out. A set of features was extracted from these signals using various state-of-the-art metrics that quantify brain and cardiovascular linear and nonlinear dynamics, which were input into a Support Vector Machine classifier to predict the subject's arousal and valence perception. The model's accuracy was 75.00% along the arousal dimension and 71.21% along the valence dimension. Our findings validate the use of Immersive Virtual Environments to elicit and automatically recognize different emotional states from neural and cardiac dynamics; this development could have novel applications in fields as diverse as Architecture, Health, Education and Videogames.This work was supported by the Ministerio de Economia y Competitividad. Spain (Project TIN2013-45736-R).Marín-Morales, J.; Higuera-Trujillo, JL.; Greco, A.; Guixeres Provinciale, J.; Llinares Millán, MDC.; Scilingo, EP.; Alcañiz Raya, ML.... (2018). Affective computing in virtual reality: emotion recognition from brain and heartbeat dynamics using wearable sensors. Scientific Reports. 8:1-15. https://doi.org/10.1038/s41598-018-32063-4S1158Picard, R. W. Affective computing. (MIT press, 1997).Picard, R. W. Affective Computing: Challenges. Int. J. Hum. Comput. Stud. 59, 55–64 (2003).Jerritta, S., Murugappan, M., Nagarajan, R. & Wan, K. Physiological signals based human emotion Recognition: a review. Signal Process. its Appl. (CSPA), 2011 IEEE 7th Int. Colloq. 410–415, https://doi.org/10.1109/CSPA.2011.5759912 (2011).Harms, M. B., Martin, A. & Wallace, G. L. Facial emotion recognition in autism spectrum disorders: A review of behavioral and neuroimaging studies. Neuropsychol. Rev. 20, 290–322 (2010).Koolagudi, S. G. & Rao, K. S. Emotion recognition from speech: A review. Int. J. Speech Technol. 15, 99–117 (2012).Gross, J. J. & Levenson, R. W. Emotion elicitation using films. Cogn. Emot. 9, 87–108 (1995).Lindal, P. J. & Hartig, T. Architectural variation, building height, and the restorative quality of urban residential streetscapes. J. Environ. Psychol. 33, 26–36 (2013).Ulrich, R. View through a window may influence recovery from surgery. Science (80-.). 224, 420–421 (1984).Fernández-Caballero, A. et al. Smart environment architecture for emotion detection and regulation. J. Biomed. Inform. 64, 55–73 (2016).Ekman, P. Basic Emotions. Handbook of cognition and emotion 45–60, https://doi.org/10.1017/S0140525X0800349X (1999).Posner, J., Russell, J. A. & Peterson, B. S. The circumplex model of affect: an integrative approach to affective neuroscience, cognitive development, and psychopathology. Dev. Psychopathol. 17, 715–34 (2005).Russell, J. A. & Mehrabian, A. Evidence for a three-factor theory of emotions. J. Res. Pers. 11, 273–294 (1977).Calvo, R. A. & D’Mello, S. Affect detection: An interdisciplinary review of models, methods, and their applications. IEEE Trans. Affect. Comput. 1, 18–37 (2010).Valenza, G. et al. Combining electroencephalographic activity and instantaneous heart rate for assessing brain–heart dynamics during visual emotional elicitation in healthy subjects. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 374, 20150176 (2016).Valenza, G., Lanata, A. & Scilingo, E. P. The role of nonlinear dynamics in affective valence and arousal recognition. IEEE Trans. Affect. Comput. 3, 237–249 (2012).Valenza, G., Citi, L., Lanatá, A., Scilingo, E. P. & Barbieri, R. Revealing real-time emotional responses: a personalized assessment based on heartbeat dynamics. Sci. Rep. 4, 4998 (2014).Valenza, G. et al. Wearable monitoring for mood recognition in bipolar disorder based on history-dependent long-term heart rate variability analysis. IEEE J. Biomed. Heal. Informatics 18, 1625–1635 (2014).Piwek, L., Ellis, D. A., Andrews, S. & Joinson, A. The Rise of Consumer Health Wearables: Promises and Barriers. PLoS Med. 13, 1–9 (2016).Xu, J., Mitra, S., Van Hoof, C., Yazicioglu, R. & Makinwa, K. A. A. Active Electrodes for Wearable EEG Acquisition: Review and Electronics Design Methodology. IEEE Rev. Biomed. Eng. 3333, 1–1 (2017).Kumari, P., Mathew, L. & Syal, P. Increasing trend of wearables and multimodal interface for human activity monitoring: A review. Biosens. Bioelectron. 90, 298–307 (2017).He, C., Yao, Y. & Ye, X. An Emotion Recognition System Based on Physiological Signals Obtained by Wearable Sensors. In Wearable Sensors and Robots: Proceedings of International Conference on Wearable Sensors and Robots 2015 (eds Yang, C., Virk, G. S. & Yang, H.) 15–25. https://doi.org/10.1007/978-981-10-2404-7_2 (Springer Singapore, 2017).Nakisa, B., Rastgoo, M. N., Tjondronegoro, D. & Chandran, V. Evolutionary computation algorithms for feature selection of EEG-based emotion recognition using mobile sensors. Expert Syst. Appl. 93, 143–155 (2018).Kory Jacqueline, D. & Sidney, K. Affect Elicitation for Affective Computing. In The Oxford Handbook of Affective Computing 371–383 (2014).Ekman, P. The directed facial action task. In Handbook of emotion elicitation and assessment 47–53 (2007).Harmon-Jones, E., Amodio, D. M. & Zinner, L. R. Social psychological methods of emotion elicitation. Handb. Emot. elicitation Assess. 91–105, https://doi.org/10.2224/sbp.2007.35.7.863 (2007)Roberts, N. A., Tsai, J. L. & Coan, J. A. Emotion elicitation using dyadic interaction task. Handbook of Emotion Elicitation and Assessment 106–123 (2007).Nardelli, M., Valenza, G., Greco, A., Lanata, A. & Scilingo, E. P. Recognizing emotions induced by affective sounds through heart rate variability. IEEE Trans. Affect. Comput. 6, 385–394 (2015).Kim, J. Emotion Recognition Using Speech and Physiological Changes. Robust Speech Recognit. Underst. 265–280 (2007).Soleymani, M., Pantic, M. & Pun, T. Multimodal emotion recognition in response to videos (Extended abstract). 2015 Int. Conf. Affect. Comput. Intell. Interact. ACII 2015 3, 491–497 (2015).Baños, R. M. et al. Immersion and Emotion: Their Impact on the Sense of Presence. CyberPsychology Behav. 7, 734–741 (2004).Giglioli, I. A. C., Pravettoni, G., Martín, D. L. S., Parra, E. & Raya, M. A. A novel integrating virtual reality approach for the assessment of the attachment behavioral system. Front. Psychol. 8, 1–7 (2017).Marín-Morales, J., Torrecilla, C., Guixeres, J. & Llinares, C. Methodological bases for a new platform for the measurement of human behaviour in virtual environments. DYNA 92, 34–38 (2017).Vince, J. Introduction to virtual reality. (Media, Springer Science & Business, 2004).Alcañiz, M., Baños, R., Botella, C. & Rey, B. The EMMA Project: Emotions as a Determinant of Presence. PsychNology J. 1, 141–150 (2003).Vecchiato, G. et al. Neurophysiological correlates of embodiment and motivational factors during the perception of virtual architectural environments. Cogn. Process. 16, 425–429 (2015).Slater, M. & Wilbur, S. A Framework for Immersive Virtual Environments (FIVE): Speculations on the Role of Presence in Virtual Environments. Presence Teleoperators Virtual Environ. 6, 603–616 (1997).Riva, G. et al. Affective Interactions Using Virtual Reality: The Link between Presence and Emotions. CyberPsychology Behav. 10, 45–56 (2007).Baños, R. M. et al Changing induced moods via virtual reality. In International Conference on Persuasive Technology (ed. Springer, Berlin, H.) 7–15, https://doi.org/10.1007/11755494_3 (2006).Baños, R. M. et al. Positive mood induction procedures for virtual environments designed for elderly people. Interact. Comput. 24, 131–138 (2012).Gorini, A. et al. Emotional Response to Virtual Reality Exposure across Different Cultures: The Role of the AttributionProcess. CyberPsychology Behav. 12, 699–705 (2009).Gorini, A., Capideville, C. S., De Leo, G., Mantovani, F. & Riva, G. The Role of Immersion and Narrative in Mediated Presence: The Virtual Hospital Experience. Cyberpsychology, Behav. Soc. Netw. 14, 99–105 (2011).Chirico, A. et al. Effectiveness of Immersive Videos in Inducing Awe: An Experimental Study. Sci. Rep. 7, 1–11 (2017).Blascovich, J. et al. Immersive Virtual Environment Technology as a Methodological Tool for Social Psychology. Psychol. Inq. 7965, 103–124 (2012).Peperkorn, H. M., Alpers, G. W. & Mühlberger, A. Triggers of fear: Perceptual cues versus conceptual information in spider phobia. J. Clin. Psychol. 70, 704–714 (2014).McCall, C., Hildebrandt, L. K., Bornemann, B. & Singer, T. Physiophenomenology in retrospect: Memory reliably reflects physiological arousal during a prior threatening experience. Conscious. Cogn. 38, 60–70 (2015).Hildebrandt, L. K., Mccall, C., Engen, H. G. & Singer, T. Cognitive flexibility, heart rate variability, and resilience predict fine-grained regulation of arousal during prolonged threat. Psychophysiology 53, 880–890 (2016).Notzon, S. et al. Psychophysiological effects of an iTBS modulated virtual reality challenge including participants with spider phobia. Biol. Psychol. 112, 66–76 (2015).Amaral, C. P., Simões, M. A., Mouga, S., Andrade, J. & Castelo-Branco, M. A novel Brain Computer Interface for classification of social joint attention in autism and comparison of 3 experimental setups: A feasibility study. J. Neurosci. Methods 290, 105–115 (2017).Eudave, L. & Valencia, M. Physiological response while driving in an immersive virtual environment. 2017 IEEE 14th Int. Conf. Wearable Implant. Body Sens. Networks 145–148, https://doi.org/10.1109/BSN.2017.7936028 (2017).Sharma, G. et al. Influence of landmarks on wayfinding and brain connectivity in immersive virtual reality environment. Front. Psychol. 8, 1–12 (2017).Bian, Y. et al. A framework for physiological indicators of flow in VR games: construction and preliminary evaluation. Pers. Ubiquitous Comput. 20, 821–832 (2016).Egan, D. et al. An evaluation of Heart Rate and Electrodermal Activity as an Objective QoE Evaluation method for Immersive Virtual Reality Environments. 3–8, https://doi.org/10.1109/QoMEX.2016.7498964 (2016).Meehan, M., Razzaque, S., Insko, B., Whitton, M. & Brooks, F. P. Review of four studies on the use of physiological reaction as a measure of presence in stressful virtual environments. Appl. Psychophysiol. Biofeedback 30, 239–258 (2005).Higuera-Trujillo, J. L., López-Tarruella Maldonado, J. & Llinares Millán, C. Psychological and physiological human responses to simulated and real environments: A comparison between Photographs, 360° Panoramas, and Virtual Reality. Appl. Ergon. 65, 398–409 (2016).Felnhofer, A. et al. Is virtual reality emotionally arousing? Investigating five emotion inducing virtual park scenarios. Int. J. Hum. Comput. Stud. 82, 48–56 (2015).Anderson, A. P. et al. Relaxation with Immersive Natural Scenes Presented Using Virtual Reality. Aerosp. Med. Hum. Perform. 88, 520–526 (2017).Higuera, J. L. et al. Emotional cartography in design: A novel technique to represent emotional states altered by spaces. In D and E 2016: 10th International Conference on Design and Emotion 561–566 (2016).Kroenke, K., Spitzer, R. L. & Williams, J. B. W. The PHQ-9: Validity of a brief depression severity measure. J. Gen. Intern. Med. 16, 606–613 (2001).Bradley, M. M. & Lang, P. J. Measuring emotion: The self-assessment manikin and the semantic differential. J. Behav. Ther. Exp. Psychiatry 25, 49–59 (1994).Lang, P. J., Bradley, M. M. & Cuthbert, B. N. International Affective Picture System (IAPS): Technical Manual and Affective Ratings. NIMH Cent. Study Emot. Atten. 39–58, https://doi.org/10.1027/0269-8803/a000147 (1997).Nanda, U., Pati, D., Ghamari, H. & Bajema, R. Lessons from neuroscience: form follows function, emotions follow form. Intell. Build. Int. 5, 61–78 (2013).Russell, J. A. A circumplex model of affect. J. Pers. Soc. Psychol. 39, 1161–1178 (1980).Sejima, K. Kazuyo Sejima. 1988–1996. El Croquis 15 (1996).Ochiai, H. et al. Physiological and Psychological Effects of Forest Therapy on Middle-Aged Males with High-NormalBlood Pressure. Int. J. Environ. Res. Public Health 12, 2532–2542 (2015).Noguchi, H. & Sakaguchi, T. Effect of illuminance and color temperature on lowering of physiological activity. Appl. Hum. Sci. 18, 117–123 (1999).Küller, R., Mikellides, B. & Janssens, J. Color, arousal, and performance—A comparison of three experiments. Color Res. Appl. 34, 141–152 (2009).Yildirim, K., Hidayetoglu, M. L. & Capanoglu, A. Effects of interior colors on mood and preference: comparisons of two living rooms. Percept. Mot. Skills 112, 509–524 (2011).Hogg, J., Goodman, S., Porter, T., Mikellides, B. & Preddy, D. E. Dimensions and determinants of judgements of colour samples and a simulated interior space by architects and non‐architects. Br. J. Psychol. 70, 231–242 (1979).Jalil, N. A., Yunus, R. M. & Said, N. S. Environmental Colour Impact upon Human Behaviour: A Review. Procedia - Soc. Behav. Sci. 35, 54–62 (2012).Jacobs, K. W. & Hustmyer, F. E. Effects of four psychological primary colors on GSR, heart rate and respiration rate. Percept. Mot. Skills 38, 763–766 (1974).Jin, H. R., Yu, M., Kim, D. W., Kim, N. G. & Chung, A. S. W. Study on Physiological Responses to Color Stimulation. In International Association of Societies of Design Research (ed. Poggenpohl, S.) 1969–1979 (Korean Society of Design Science, 2009).Vartanian, O. et al. Impact of contour on aesthetic judgments and approach-avoidance decisions in architecture. Proc. Natl. Acad. Sci. 110, 1–8 (2013).Tsunetsugu, Y., Miyazaki, Y. & Sato, H. Visual effects of interior design in actual-size living rooms on physiological responses. Build. Environ. 40, 1341–1346 (2005).Stamps, A. E. Physical Determinants of Preferences for Residential Facades. Environ. Behav. 31, 723–751 (1999).Berlyne, D. E. Novelty, Complexity, and Hedonic Value. Percept. Psychophys. 8, 279–286 (1970).Krueger, R. A. & Casey, M. Focus groups: a practical guide for applied research. (Sage Publications, 2000).Acharya, U. R., Joseph, K. P., Kannathal, N., Lim, C. M. & Suri, J. S. Heart rate variability: A review. Med. Biol. Eng. Comput. 44, 1031–1051 (2006).Tarvainen, M. P., Niskanen, J. P., Lipponen, J. A., Ranta-aho, P. O. & Karjalainen, P. A. Kubios HRV - Heart rate variability analysis software. Comput. Methods Programs Biomed. 113, 210–220 (2014).Pan, J. & Tompkins, W. J. A real-time QRS detection algorithm. Biomed. Eng. IEEE Trans. 1, 230–236 (1985).Tarvainen, M. P., Ranta-aho, P. O. & Karjalainen, P. A. An advanced detrending method with application to HRV analysis. IEEE Trans. Biomed. Eng. 49, 172–175 (2002).Valenza, G. et al. Predicting Mood Changes in Bipolar Disorder Through HeartbeatNonlinear Dynamics. IEEE J. Biomed. Heal. Informatics 20, 1034–1043 (2016).Pincus, S. & Viscarello, R. Approximate Entropy A regularity measure for fetal heart rate analysis. Obstet. Gynecol. 79, 249–255 (1992).Richman, J. & Moorman, J. Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Hear. Circ Physiol 278, H2039–H2049 (2000).Peng, C.-K., Havlin, S., Stanley, H. E. & Goldberger, A. L. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5, 82–87 (1995).Grassberger, P. & Procaccia, I. Characterization of strange attractors. Phys. Rev. Lett. 50, 346–349 (1983).Delorme, A. & Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134, 9–21 (2004).Colomer Granero, A. et al. A Comparison of Physiological Signal Analysis Techniques and Classifiers for Automatic Emotional Evaluation of Audiovisual Contents. Front. Comput. Neurosci. 10, 1–14 (2016).Kober, S. E., Kurzmann, J. & Neuper, C. Cortical correlate of spatial presence in 2D and 3D interactive virtual reality: An EEG study. Int. J. Psychophysiol. 83, 365–374 (2012).Hyvärinen, A. & Oja, E. Independent component analysis: Algorithms and applications. Neural Networks 13, 411–430 (2000).Welch, P. D. The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Aver. aging Over Short, Modified Periodograms. IEEE Trans. AUDIO Electroacoust. 15, 70–73 (1967).Mormann, F., Lehnertz, K., David, P. & Elger, E. C. Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Phys. D Nonlinear Phenom. 144, 358–369 (2000).Jolliffe, I. T. Principal Component Analysis, Second Edition. Encycl. Stat. Behav. Sci. 30, 487 (2002).Schöllkopf, B., Smola, A. J., Williamson, R. C. & Bartlett, P. L. New support vector algorithms. Neural Comput 12, 1207–1245 (2000).Yan, K. & Zhang, D. Feature selection and analysis on correlated gas sensor data with recursive feature elimination. Sensors Actuators, B Chem. 212, 353–363 (2015).Chang, C.-C. & Lin, C.-J. Libsvm: A Library for Support Vector Machines. ACM Trans. Intell. Syst. Technol. 2, 1–27 (2011).Lewis, P. A., Critchley, H. D., Rotshtein, P. & Dolan, R. J. Neural correlates of processing valence and arousal in affective words. Cereb. Cortex 17, 742–748 (2007).McCall, C., Hildebrandt, L. K., Hartmann, R., Baczkowski, B. M. & Singer, T. Introducing the Wunderkammer as a tool for emotion research: Unconstrained gaze and movement patterns in three emotionally evocative virtual worlds. Comput. Human Behav. 59, 93–107 (2016).Blake, J. & Gurocak, H. B. Haptic glove with MR brakes for virtual reality. IEEE/ASME Trans. Mechatronics 14, 606–615 (2009).Heydarian, A. et al. Immersive virtual environments versus physical built environments: A benchmarking study for building design and user-built environment explorations. Autom. Constr. 54, 116–126 (2015).Kuliga, S. F., Thrash, T., Dalton, R. C. & Hölscher, C. Virtual reality as an empirical research tool - Exploring user experience in a real building and a corresponding virtual model. Comput. Environ. Urban Syst. 54, 363–375 (2015).Yeom, D., Choi, J.-H. & Zhu, Y. Investigation of the Physiological Differences between Immersive Virtual Environment and Indoor Enviorment in a Building. Indoor adn Built Enviornment 0, Accept (2017).Combrisson, E. & Jerbi, K. Exceeding chance level by chance: The caveat of theoretical chance levels in brain signal classification and statistical assessment of decoding accuracy. J. Neurosci. Methods 250, 126–136 (2015).He, C., Yao, Y. & Ye, X. An Emotion Recognition System Based on Physiological Signals Obtained by Wearable Sensors. In Wearable Sensors and Robots: Proceedings of International Conference on Wearable Sensors and Robots 2015 (eds. Yang, C., Virk, G. S. & Yang, H.) 15–25, https://doi.org/10.1007/978-981-10-2404-7_2 (Springer Singapore, 2017)
    corecore