694 research outputs found
Nutritional value of Pleurotus (Flabellatus) Djamor (R-22) cultivated on sawdusts of different woods
The sawdust of different woods were investigat
ed for the cultivation of exotic strain of
Pleurotus (flabellatus) djamor
(R-22)
to find out the efficiency of different nutrients including protein, fat, crude fiber, ash, dry matter and moisture.
Among all type of nutrients, protein, fat, cr
ude fiber, ash, dry matter and moisture of
Pleurotus ostreatus
on sawdust of
different woods were observed. Protein was observed on cont
rol treatment (cotton waste, kikar, mango, mixed sawdust,
simbal and kail (21.89), (21.64), (21.34), (21.16), (21.03) and
(20.75) % respectively. Fat was observed on control treatment
(cotton waste, kikar, mango, mi
xed sawdust, simbal and kail (0.80), (0.53), (0
.41), (0.33), (0.24) and (0.11)% respectively.
Crude fiber was observed on control treatment (cotton waste, kikar, mango, mixed sawdust, simbal and kail (8.92), (8.45),
(8.17), (7.96), (7.70) and (7.32) % respectively. Ash was observ
ed on control treatment (cotton waste, kikar, mango, mixed
sawdust, simbal and kail (7.65), (6.75), (6
.47), (6.39), (6.33) and (6.23%) respectively. Dry matter was observed on control
treatment (cotton waste, kikar, mango, mixed sawdust, simbal and kail (6.47), (6.27), (6.13), (6.01), (5.87) and (5.67) %
respectively. Moisture was observed on control treatment (c
otton waste, kikar, mango, mixed sawdust, simbal and kail
(84.55), (81.20), (79.85), (76.26), (74.35) and (71.14) % respectively. Oyster mushroom showed relatively more contents on
control treatment cotton waste as compared to other substrates. The maximum protein, fat, crude fiber, ash, dry matter and
moisture contents in
Pleurotus (flabellatus) djamor (R-22)
was obtained on Kikar sawdust .The lowest contents was
obtained on kail sawdust
Cloning, sequencing, and characterization of the hexahydro-1,3,5-trinitro-1,3,5-triazine degradation gene cluster from Rhodococcus rhodochrous
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a high explosive which presents an environmental hazard as a major land and groundwater contaminant. Rhodococcus rhodochrous strain 11Y was isolated from explosive contaminated land and is capable of degrading RDX when provided as the sole source of nitrogen for growth. Products of RDX degradation in resting-cell incubations were analyzed and found to include nitrite, formaldehyde, and formate. No ammonium was excreted into the medium, and no dead-end metabolites were observed. The gene responsible for the degradation of RDX in strain 11Y is a constitutively expressed cytochrome P450-like gene, xpLA, which is found in a gene cluster with an adrenodoxin reductase homologue, xplB. The cytochrome P450 also has a flavodoxin domain at the N terminus. This study is the first to present a gene which has been identified as being responsible for RDX biodegradation. The mechanism of action of XplA on RDX is thought to involve initial denitration followed by spontaneous ring cleavage and mineralization
Antimicrobial activity of potato Rhizospheric Pseudomonas chlororaphis subsp. aureofaciens from Sétif Algeria
Aims: This study was assessed to demonstrate the antimicrobial activity in vitro of an identified fluorescent Pseudomonas strain characterized for its capacity to produce phenazine compounds.
Methodology: First Pseudomonas chlororaphis subsp aureofaciens was inoculated on Nutrient Broth supplemented with Yeast Extract (NBY) and with glucose at a final concentration of 2%, after incubation the filtered culture was acidified with HCl to pH 2. The solution was extracted twice with the same volume of ethyl-acetate. The organic supernatants were combined, dried over anhydrous Na2SO4, and evaporated to dryness. The crude extract was resuspended in methanol and tested for antimicrobial activity. Antimicrobial activity was determined (i) by disc diffusion technique for bacteria and (ii) using serial dilution technique in soft PDA for fungi. Secondly the antifungal activity of the bacterial strain was tested against several phytopathogenic fungi in dual culture.
Results: The studied strain has an important activity against the phytopathogenic bacteria and fungi tested. Among the tested fungi Fusarium oxysporum f. sp. albedinis is the most sensitive to the actions of this Pseudomonas, where the inhibition rate reached 77.78%. The less sensitive one was Pythium ultimum with a rate of 55.56%. While for pathogenic bacteria only Salmonella enteridis was sensitive to the tested strain.
Conclusion: Pseudomonas chlororaphis subsp aureofaciens showed appreciable antagonistic activity, in vitro, against special forms of Fusarium oxysporum and the tested phytopathogenic bacteria
Climate Change in the High Andes:implications and adaptation strategies for small-scale farmers
Abstract: Global climate change represents a major threat to sustainable farming in the Andes. Farmers have used local ecological knowledge and intricate production systems to cope, adapt and reorganize to meet climate uncertainty and risk, which have always been a fact of life. Those traditional systems are generally highly resilient, but the predicted effects, rates and variability of climate change may push them beyond their range of adaptability. This article examines the extent of actual and potential impacts of climate variability and change on small-scale farmers in the highland Andes of Bolivia, Ecuador and Peru. It describes how climate change impacts agriculture through deglaciation, changes in hydrology, soil and pest and disease populations. The article highlights some promising adaptive strategies currently in use by or possible for producers, rural communities and local institutions to mitigate climate change effects while preserving the livelihoods and environmental and social sustainability of the regio
Onset of experimental severe cardiac fibrosis is mediated by overexpression of angiotensin-converting enzyme 2
Angiotensin-converting enzyme (ACE) 2 is a recently identified homologue of ACE. There is great interest in the therapeutic benefit for ACE2 overexpression in the heart. However, the role of ACE2 in the regulation of cardiac structure and function, as well as maintenance of systemic blood pressure, remains poorly understood. In cell culture, ACE2 overexpression led to markedly increased myocyte volume, assessed in primary rabbit myocytes. To assess ACE2 function in vivo, we used a recombinant adeno-associated virus 6 delivery system to provide 11-week overexpression of ACE2 in the myocardium of stroke-prone spontaneously hypertensive rats. ACE2, as well as the ACE inhibitor enalapril, significantly reduced systolic blood pressure. However, in the heart, ACE2 overexpression resulted in cardiac fibrosis, as assessed by histological analysis with concomitant deficits in ejection fraction and fractional shortening measured by echocardiography. Furthermore, global gene expression profiling demonstrated the activation of profibrotic pathways in the heart mediated by ACE2 gene delivery. This study demonstrates that sustained overexpression of ACE2 in the heart in vivo leads to the onset of severe fibrosis
A light-activated antimicrobial surface is active against bacterial, viral and fungal organisms
Evidence has shown that environmental surfaces play an important role in the transmission of nosocomial pathogens. Deploying antimicrobial surfaces in hospital wards could reduce the role environmental surfaces play as reservoirs for pathogens. Herein we show a significant reduction in viable counts of Staphylococcus epidermidis, Saccharomyces cerevisiae, and MS2 Bacteriophage after light treatment of a medical grade silicone incorporating crystal violet, methylene blue and 2 nm gold nanoparticles. Furthermore, a migration assay demonstrated that in the presence of light, growth of the fungus-like organism Pythium ultimum and the filamentous fungus Botrytis cinerea was inhibited. Atomic Force Microscopy showed significant alterations to the surface of S. epidermidis, and electron microscopy showed cellular aggregates connected by discrete surface linkages. We have therefore demonstrated that the embedded surface has a broad antimicrobial activity under white light and that the surface treatment causes bacterial envelope damage and cell aggregation
Cardiac hypertrophy is inhibited by a local pool of cAMP regulated by phosphodiesterase 2
Rationale: Chronic elevation of 3'-5'-cyclic adenosine monophosphate (cAMP) levels has been associated with cardiac remodelling and cardiac hypertrophy. However, enhancement of particular aspects of cAMP/protein kinase A (PKA) signalling appears to be beneficial for the failing heart. cAMP is a pleiotropic second messenger with the ability to generate multiple functional outcomes in response to different extracellular stimuli with strict fidelity, a feature that relies on the spatial segregation of the cAMP pathway components in signalling microdomains.
Objective: How individual cAMP microdomains impact on cardiac pathophysiology remains largely to be established. The cAMP-degrading enzymes phosphodiesterases (PDEs) play a key role in shaping local changes in cAMP. Here we investigated the effect of specific inhibition of selected PDEs on cardiac myocyte hypertrophic growth.
Methods and Results: Using pharmacological and genetic manipulation of PDE activity we found that the rise in cAMP resulting from inhibition of PDE3 and PDE4 induces hypertrophy whereas increasing cAMP levels via PDE2 inhibition is anti-hypertrophic. By real-time imaging of cAMP levels in intact myocytes and selective displacement of PKA isoforms we demonstrate that the anti-hypertrophic effect of PDE2 inhibition involves the generation of a local pool of cAMP and activation of a PKA type II subset leading to phosphorylation of the nuclear factor of activated T cells (NFAT).
Conclusions: Different cAMP pools have opposing effects on cardiac myocyte cell size. PDE2 emerges as a novel key regulator of cardiac hypertrophy in vitro and in vivo and its inhibition may have therapeutic applications
Track Reconstruction and Performance of DRIFT Directional Dark Matter Detectors using Alpha Particles
First results are presented from an analysis of data from the DRIFT-IIa and
DRIFT-IIb directional dark matter detectors at Boulby Mine in which alpha
particle tracks were reconstructed and used to characterise detector
performance--an important step towards optimising directional technology. The
drift velocity in DRIFT-IIa was [59.3 +/- 0.2 (stat) +/- 7.5 (sys)] m/s based
on an analysis of naturally-occurring alpha-emitting background. The drift
velocity in DRIFT-IIb was [57 +/- 1 (stat) +/- 3 (sys)] m/s determined by the
analysis of alpha particle tracks from a Po-210 source. 3D range reconstruction
and energy spectra were used to identify alpha particles from the decay of
Rn-222, Po-218, Rn-220 and Po-216. This study found that (22 +/- 2)% of Po-218
progeny (from Rn-222 decay) are produced with no net charge in 40 Torr CS2. For
Po-216 progeny (from Rn-220 decay) the uncharged fraction is (100 +0 -35)%.Comment: 27 pages, 12 figures, 5 tables. Submitted to Nuclear Instruments and
Methods in Physics Research, Section A. Subj-class: Instrumentation and
Detector
Assessment of a novel, capsid-modified adenovirus with an improved vascular gene transfer profile
<p>Background: Cardiovascular disorders, including coronary artery bypass graft failure and in-stent restenosis remain significant opportunities for the advancement of novel therapeutics that target neointimal hyperplasia, a characteristic of both pathologies. Gene therapy may provide a successful approach to improve the clinical outcome of these conditions, but would benefit from the development of more efficient vectors for vascular gene delivery. The aim of this study was to assess whether a novel genetically engineered Adenovirus could be utilised to produce enhanced levels of vascular gene expression.</p>
<p>Methods: Vascular transduction capacity was assessed in primary human saphenous vein smooth muscle and endothelial cells using vectors expressing the LacZ reporter gene. The therapeutic capacity of the vectors was compared by measuring smooth muscle cell metabolic activity and migration following infection with vectors that over-express the candidate therapeutic gene tissue inhibitor of matrix metalloproteinase-3 (TIMP-3).</p>
<p>Results: Compared to Adenovirus serotype 5 (Ad5), the novel vector Ad5T*F35++ demonstrated improved binding and transduction of human vascular cells. Ad5T*F35++ mediated expression of TIMP-3 reduced smooth muscle cell metabolic activity and migration in vitro. We also demonstrated that in human serum samples pre-existing neutralising antibodies to Ad5T*F35++ were less prevalent than Ad5 neutralising antibodies.</p>
<p>Conclusions: We have developed a novel vector with improved vascular transduction and improved resistance to human serum neutralisation. This may provide a novel vector platform for human vascular gene transfer.</p>
Recommended from our members
Watching mesoporous metal films grow during templated electrodeposition with in situ SAXS
In this paper, we monitor the real-time growth of mesoporous platinum during electrodeposition using small-angle X-ray scattering (SAXS). Previously, we have demonstrated that platinum films featuring the ‘single diamond’ (Fd3m) morphology can be produced from ‘double diamond’ (Pn3m) lipid cubic phase templates; the difference in symmetry provides additional scattering signals unique to the metal. Taking advantage of this, we present simultaneous in situ SAXS/electrochemical measurement as the platinum nanostructures grow within the lipid template. This measurement allows us to correlate the nanostructure appearance with the deposition current density and to monitor the evolution of the orientational and lateral ordering of the lipid and platinum during deposition and after template removal. In other periodic metal nanomaterials deposited within any of the normal topology liquid crystal, mesoporous silica or block copolymer templates previously published, the template and emerging metal have the same symmetry, so such a study has not been possible previously
- …
