53 research outputs found
Cassava whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), in sub-Saharan African farming landscapes: a review of the factors determining abundance
Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a pest species complex that causes widespread damage to cassava, a staple food crop for millions of smallholder households in Sub-Saharan Africa. Species in the complex cause direct feeding damage to cassava and are the vectors of multiple plant viruses. Whilst significant work has gone into developing virus-resistant cassava cultivars, there has been little research effort aimed at understanding the ecology of these insect vectors. In this review we critically assess the knowledge base relating to factors that may lead to high population densities of Sub-Saharan African (SSA) Bemisia tabaci species in cassava production landscapes of East Africa. We focus first on empirical studies that have examined biotic or abiotic factors that may lead to high populations. We then identify knowledge gaps that need to be filled to deliver long-term sustainable solutions to manage both the vectors and the viruses that they transmit. We found that whilst many hypotheses have been put forward to explain the increases in abundance witnessed since the early 1990s, there are little available published data and these tend to have been collected in a piecemeal manner. The most critical knowledge gaps identified were: (i) understanding how cassava cultivars and alternative host plants impact B. tabaci population dynamics and its natural enemies; (ii) the impact of natural enemies in terms of reducing the frequency of outbreaks and (iii) the use and management of insecticides to delay or avoid the development of resistance. In addition, there are several fundamental methodologies that need to be developed and deployed in East Africa to address some of the more challenging knowledge gaps
Quantum-Key Distribution With Vector Modes
High-dimensional encoding using higher degrees of freedom has become topical in quantum communication protocols. When taking advantage of entanglement correlations, the state space can be made even larger. Here, we exploit the entanglement between two dimensional space and polarization qubits, to realize a four-dimensional quantum key distribution protocol. This is achieved by using entangled states as a basis, analogous to the Bell basis, rather than typically encoding information on individual qubits. The encoding and decoding in the required complementary bases is achieved by manipulating the Pancharatnam-Berry phase with a single optical element: a q-plate. Our scheme shows a transmission fidelity of 0.98 and secret key rate of 0.9 bits per photon. While the use of only static elements is preferable, we show that the low secret key rate is a consequence of the filter based detection of the modes, rather than our choice of encoding modes
Nature and dynamics of climate variability in the uganda cattle corridor
The study was conducted in the districts of Nakaseke and Nakasongola stratified into four farming systems of crop dominancy, pastoralists, mixed crop and livestock and fishing. The study was guided by two research questions: (1) how do community residents perceive climate change/variability? (2) What is the trend and nature of climate variability and how does it compare with people’s perceptions? Ninety eight percent (98%) of the respondents reported that the routine patterns of weather and climate had changed in the last 5 to 10 years and it has become less predictable with sunshine hours being extended and rainfall amounts being reduced. This compared well with the analyzed secondary data. Over 78% respondents perceived climate change and variability to be caused by tree cutting other than the known scientific reasons like increase in industrial fumes or increased fossil fuel use. Climate data showed that over the period 1961 to 2010 the number of dry spells within a rainfall season had increased with the most significant increase observed in the first rainfall season of March to May as compared to the season of September to November. The first dry season of June/July to August is short while the second dry season of December to February is long during the study period. The two rainfall seasons of March to May and September to November seem to be merging into one major season from May to November. Temperature data shows a significant increasing trend in mean annual temperatures with the most increase observed in the mean annual minimum temperatures than the maximum temperatures.Key words: Climate variability, community perceptions, Uganda cattle corridor, dry spells
Quantum transport of high-dimensional spatial information with a nonlinear detector
Information exchange between two distant parties, where information is shared without physically transporting it, is a crucial resource in future quantum networks. Doing so with high-dimensional states offers the promise of higher information capacity and improved resilience to noise, but progress to date has been limited. Here we demonstrate how a nonlinear parametric process allows for arbitrary high-dimensional state projections in the spatial degree of freedom, where a strong coherent field enhances the probability of the process. This allows us to experimentally realise quantum transport of high-dimensional spatial information facilitated by a quantum channel with a single entangled pair and a nonlinear spatial mode detector. Using sum frequency generation we upconvert one of the photons from an entangled pair resulting in high-dimensional spatial information transported to the other. We realise a d¿=¿15 quantum channel for arbitrary photonic spatial modes which we demonstrate by faithfully transferring information encoded into orbital angular momentum, Hermite-Gaussian and arbitrary spatial mode superpositions, without requiring knowledge of the state to be sent. Our demonstration merges the nascent fields of nonlinear control of structured light with quantum processes, offering a new approach to harnessing high-dimensional quantum states, and may be extended to other degrees of freedom too.B.S. would like to acknowledge the Department of Science and Innovation and Council for Industrial and Scientific Research (South Africa) for funding. A.V. acknowledges the MCIN with funding from European Union (QSNP, 101114043), Next Generation EU (PRTR-C17.I1), and the Japan Society for the Promotion of Science for funding (JSPS-KAKENHI - G21K14549). F.S. acknowledges financial support by the Fraunhofer Internal Programs under Grant No. Attract 066-604178. M.A.C., F.S.R., and A.F. thanks the National Research Foundation for funding (NRF Grant No. 121908, 118532, TTK2204011621). A.V. and J.P.T. acknowledge financial support from the “Severo Ochoa” program for Centres of Excellence CEX2019-000910-S [MICINN/ AEI/10.13039/501100011033], Fundació Cellex, Fundació Mir-Puig, and Generalitat de Catalunya through CERCA, from project 20FUN02 “POLight” funded by the EMPIR programme, and from project QUISPAMOL (PID2020-112670GB-I00).Peer ReviewedPostprint (published version
Introduction of household biogas digesters in rural farming households of the Maluti-a-Phofung municipality, South Africa
The study aimed to introduce biogas as an alternative source of energy for rural cattle farmers in the Maluti-a-Phofung municipality in the Free State Province, South Africa. To augment the rural farming community’s adoption of the biodigester technology the following initiatives were undertaken: (i) a situational analysis (or diagnostic survey); (ii) training on biogas production in an integrated crop-livestock-bioenergy system; (iii) installation of the biodigesters; and (iv) monitoring and evaluation of the biogas production. Results on the diagnostic survey showed that the main source of energy for cooking was wood in all the farms and availability of water was not a constraint. Prefabricated biodigesters of 6m3 -12m3 were installed in all the households and, after continual feeding of the units with cattle dung, the production of biogas increased gradually. Monitoring of biogas production showed that, in two-thirds of the households, 80% of their cooking needs were met in summer, while in winter biogas production was minimal due to extremely cold weather. Challenges faced included non-adherence to a feeding regime – resulting in a blockage of the biodigester – and lack of feeding. Generally, farmers in the study area showed a high appreciation of the biodigester technology
Photonic quantum information processing: a review
Photonic quantum technologies represent a promising platform for several
applications, ranging from long-distance communications to the simulation of
complex phenomena. Indeed, the advantages offered by single photons do make
them the candidate of choice for carrying quantum information in a broad
variety of areas with a versatile approach. Furthermore, recent technological
advances are now enabling first concrete applications of photonic quantum
information processing. The goal of this manuscript is to provide the reader
with a comprehensive review of the state of the art in this active field, with
a due balance between theoretical, experimental and technological results. When
more convenient, we will present significant achievements in tables or in
schematic figures, in order to convey a global perspective of the several
horizons that fall under the name of photonic quantum information.Comment: 36 pages, 6 figures, 634 references. Updated version with minor
changes and extended bibliograph
A method for real-time classification of insect vectors of mosaic and brown streak disease in cassava plants for future implementation within a low-cost, handheld, in-field multispectral imaging sensor
Background
The paper introduces a multispectral imaging system and data-processing approach for the identification and discrimination of morphologically indistinguishable cryptic species of the destructive crop pest, the whitefly Bemisia tabaci. This investigation and the corresponding system design, was undertaken in two phases under controlled laboratory conditions. The first exploited a prototype benchtop variant of the proposed sensor system to analyse four cryptic species of whitefly reared under similar conditions. The second phase, of the methodology development, employed a commercial high-precision laboratory hyperspectral imager to recover reference data from five cryptic species of whitefly, immobilized through flash freezing, and taken from across four feeding environments.
Results
The initial results, for the single feeding environment, showed that a correct species classification could be achieved in 85–95% of cases, utilising linear Partial Least Squares approaches. The robustness of the classification approach was then extended both in terms of the automated spatial extraction of the most pertinent insect body parts, to assist with the spectral classification model, as well as the incorporation of a non-linear Support Vector Classifier to maintain the overall classification accuracy at 88–98%, irrespective of the feeding and crop environment.
Conclusion
This study demonstrates that through an integration of both the spatial data, associated with the multispectral images being used to separate different regions of the insect, and subsequent spectral analysis of those sub-regions, that B. tabaci viral vectors can be differentiated from other cryptic species, that appear morphologically indistinguishable to a human observer, with an accuracy of up to 98%. The implications for the engineering design for an in-field, handheld, sensor system is discussed with respect to the learning gained from this initial stage of the methodology development
Network Analysis, Creative System Modelling and Decision Support: The NetSyMoD Approach
This paper presents the NetSyMoD approach where NetSyMod stands for Network Analysis Creative System Modelling Decision Support. It represents the outcome of several years of research at FEEM in the field of natural resources management, environmental evaluation and decision-making, within the Natural Resources Management Research Programme. NetSyMoD is a flexible and comprehensive methodological framework, which uses a suite of support tools, aimed at facilitating the involvement of stakeholders or experts in decision-making processes. The main phases envisaged for the process are: (i) the identification of relevant actors, (ii) the analysis of social networks, (iii) the creative system modelling and modelling of the reality being considered (i.e. the local socio-economic and environmental system), and (iv) the analysis of alternative options available for the management of the specific case (e.g. alternative projects, plans, strategies). The strategies for participation are necessarily context-dependent, and thus not all the NetSyMod phases may be needed in every application. Furthermore, the practical solutions for their implementation may significantly differ from one case to another, depending not only on the context, but also on the available resources (human and financial). The various applications of NetSyMoD have nonetheless in common the same approach for problem analysis and communication within a group of actors, based upon the use of creative thinking techniques, the formalisation of human-environment relationships through the DPSIR framework, and the use of multi-criteria analysis through the mDSS software
- …