36 research outputs found

    Prognostic imaging biomarkers for diabetic kidney disease (iBEAt): Study protocol

    Get PDF
    Background: Diabetic kidney disease (DKD) remains one of the leading causes of premature death in diabetes. DKD is classified on albuminuria and reduced kidney function (estimated glomerular filtration rate (eGFR)) but these have modest value for predicting future renal status. There is an unmet need for biomarkers that can be used in clinical settings which also improve prediction of renal decline on top of routinely available data, particularly in the early stages. The iBEAt study of the BEAt-DKD project aims to determine whether renal imaging biomarkers (magnetic resonance imaging (MRI) and ultrasound (US)) provide insight into the pathogenesis and heterogeneity of DKD (primary aim) and whether they have potential as prognostic biomarkers in DKD (secondary aim). Methods: iBEAt is a prospective multi-centre observational cohort study recruiting 500 patients with type 2 diabetes (T2D) and eGFR ≥30 ml/min/1.73m2. At baseline, blood and urine will be collected, clinical examinations will be performed, and medical history will be obtained. These assessments will be repeated annually for 3 years. At baseline each participant will also undergo quantitative renal MRI and US with central processing of MRI images. Biological samples will be stored in a central laboratory for biomarker and validation studies, and data in a central data depository. Data analysis will explore the potential associations between imaging biomarkers and renal function, and whether the imaging biomarkers improve the prediction of DKD progression. Ancillary substudies will: (1) validate imaging biomarkers against renal histopathology; (2) validate MRI based renal blood flow measurements against H2O15 positron-emission tomography (PET); (3) validate methods for (semi-)automated processing of renal MRI; (4) examine longitudinal changes in imaging biomarkers; (5) examine whether glycocalyx and microvascular measures are associated with imaging biomarkers and eGFR decline; (6) explore whether the findings in T2D can be extrapolated to type 1 diabetes. Discussion: iBEAt is the largest DKD imaging study to date and will provide valuable insights into the progression and heterogeneity of DKD. The results may contribute to a more personalised approach to DKD management in patients with T2D. Trial registration: Clinicaltrials.gov (NCT03716401)

    Prognostic imaging biomarkers for diabetic kidney disease (iBEAt):study protocol

    Get PDF
    Background: Diabetic kidney disease (DKD) remains one of the leading causes of premature death in diabetes. DKD is classified on albuminuria and reduced kidney function (estimated glomerular filtration rate (eGFR)) but these have modest value for predicting future renal status. There is an unmet need for biomarkers that can be used in clinical settings which also improve prediction of renal decline on top of routinely available data, particularly in the early stages. The iBEAt study of the BEAt-DKD project aims to determine whether renal imaging biomarkers (magnetic resonance imaging (MRI) and ultrasound (US)) provide insight into the pathogenesis and heterogeneity of DKD (primary aim) and whether they have potential as prognostic biomarkers in DKD (secondary aim). Methods: iBEAt is a prospective multi-centre observational cohort study recruiting 500 patients with type 2 diabetes (T2D) and eGFR ≥30 ml/min/1.73m2. At baseline, blood and urine will be collected, clinical examinations will be performed, and medical history will be obtained. These assessments will be repeated annually for 3 years. At baseline each participant will also undergo quantitative renal MRI and US with central processing of MRI images. Biological samples will be stored in a central laboratory for biomarker and validation studies, and data in a central data depository. Data analysis will explore the potential associations between imaging biomarkers and renal function, and whether the imaging biomarkers improve the prediction of DKD progression. Ancillary substudies will: (1) validate imaging biomarkers against renal histopathology; (2) validate MRI based renal blood flow measurements against H2O15 positron-emission tomography (PET); (3) validate methods for (semi-)automated processing of renal MRI; (4) examine longitudinal changes in imaging biomarkers; (5) examine whether glycocalyx and microvascular measures are associated with imaging biomarkers and eGFR decline; (6) explore whether the findings in T2D can be extrapolated to type 1 diabetes. Discussion: iBEAt is the largest DKD imaging study to date and will provide valuable insights into the progression and heterogeneity of DKD. The results may contribute to a more personalised approach to DKD management in patients with T2D. Trial registration: Clinicaltrials.gov (NCT03716401)

    Prognostic imaging biomarkers for diabetic kidney disease (iBEAt): study protocol

    Get PDF
    Background: Diabetic kidney disease (DKD) remains one of the leading causes of premature death in diabetes. DKD is classified on albuminuria and reduced kidney function (estimated glomerular filtration rate (eGFR)) but these have modest value for predicting future renal status. There is an unmet need for biomarkers that can be used in clinical settings which also improve prediction of renal decline on top of routinely available data, particularly in the early stages. The iBEAt study of the BEAt-DKD project aims to determine whether renal imaging biomarkers (magnetic resonance imaging (MRI) and ultrasound (US)) provide insight into the pathogenesis and heterogeneity of DKD (primary aim) and whether they have potential as prognostic biomarkers in DKD (secondary aim). Methods: iBEAt is a prospective multi-centre observational cohort study recruiting 500 patients with type 2 diabetes (T2D) and eGFR >= 30 ml/min/1.73m(2). At baseline, blood and urine will be collected, clinical examinations will be performed, and medical history will be obtained. These assessments will be repeated annually for 3 years. At baseline each participant will also undergo quantitative renal MRI and US with central processing of MRI images. Biological samples will be stored in a central laboratory for biomarker and validation studies, and data in a central data depository. Data analysis will explore the potential associations between imaging biomarkers and renal function, and whether the imaging biomarkers improve the prediction of DKD progression. Ancillary substudies will: (1) validate imaging biomarkers against renal histopathology; (2) validate MRI based renal blood flow measurements against H2O15 positron-emission tomography (PET); (3) validate methods for (semi-)automated processing of renal MRI; (4) examine longitudinal changes in imaging biomarkers; (5) examine whether glycocalyx and microvascular measures are associated with imaging biomarkers and eGFR decline; (6) explore whether the findings in T2D can be extrapolated to type 1 diabetes. Discussion: iBEAt is the largest DKD imaging study to date and will provide valuable insights into the progression and heterogeneity of DKD. The results may contribute to a more personalised approach to DKD management in patients with T2D.</div

    Elevation of the antifibrotic peptide N-acetyl-seryl-aspartyl-lysyl-proline: a blood pressure-independent beneficial effect of angiotensin I-converting enzyme inhibitors

    Get PDF
    Blockade of the renin-angiotensin system (RAS) is well recognized as an essential therapy in hypertensive, heart, and kidney diseases. There are several classes of drugs that block the RAS; these drugs are known to exhibit antifibrotic action. An analysis of the molecular mechanisms of action for these drugs can reveal potential differences in their antifibrotic roles. In this review, we discuss the antifibrotic action of RAS blockade with an emphasis on the potential importance of angiotensin I-converting enzyme (ACE) inhibition associated with the antifibrotic peptide N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP)

    Rivaroxaban with or without Aspirin in Stable Cardiovascular Disease

    Get PDF
    BACKGROUND We evaluated whether rivaroxaban alone or in combination with aspirin would be more effective than aspirin alone for secondary cardiovascular prevention. METHODS In this double-blind trial, we randomly assigned 27,395 participants with stable atherosclerotic vascular disease to receive rivaroxaban (2.5 mg twice daily) plus aspirin (100 mg once daily), rivaroxaban (5 mg twice daily), or aspirin (100 mg once daily). The primary outcome was a composite of cardiovascular death, stroke, or myocardial infarction. The study was stopped for superiority of the rivaroxaban-plus-aspirin group after a mean follow-up of 23 months. RESULTS The primary outcome occurred in fewer patients in the rivaroxaban-plus-aspirin group than in the aspirin-alone group (379 patients [4.1%] vs. 496 patients [5.4%]; hazard ratio, 0.76; 95% confidence interval [CI], 0.66 to 0.86; P<0.001; z=−4.126), but major bleeding events occurred in more patients in the rivaroxaban-plus-aspirin group (288 patients [3.1%] vs. 170 patients [1.9%]; hazard ratio, 1.70; 95% CI, 1.40 to 2.05; P<0.001). There was no significant difference in intracranial or fatal bleeding between these two groups. There were 313 deaths (3.4%) in the rivaroxaban-plus-aspirin group as compared with 378 (4.1%) in the aspirin-alone group (hazard ratio, 0.82; 95% CI, 0.71 to 0.96; P=0.01; threshold P value for significance, 0.0025). The primary outcome did not occur in significantly fewer patients in the rivaroxaban-alone group than in the aspirin-alone group, but major bleeding events occurred in more patients in the rivaroxaban-alone group. CONCLUSIONS Among patients with stable atherosclerotic vascular disease, those assigned to rivaroxaban (2.5 mg twice daily) plus aspirin had better cardiovascular outcomes and more major bleeding events than those assigned to aspirin alone. Rivaroxaban (5 mg twice daily) alone did not result in better cardiovascular outcomes than aspirin alone and resulted in more major bleeding events. (Funded by Bayer; COMPASS ClinicalTrials.gov number, NCT01776424.

    Rationale, Design and Baseline Characteristics of Participants in the Cardiovascular Outcomes for People Using Anticoagulation Strategies (COMPASS) Trial

    Get PDF
    BACKGROUND: Long-term aspirin prevents vascular events but is only modestly effective. Rivaroxaban alone or in combination with aspirin might be more effective than aspirin alone for vascular prevention in patients with stable coronary artery disease (CAD) or peripheral artery disease (PAD). Rivaroxaban as well as aspirin increase upper gastrointestinal (GI) bleeding and this might be prevented by proton pump inhibitor therapy. METHODS: Cardiovascular Outcomes for People Using Anticoagulation Strategies (COMPASS) is a double-blind superiority trial comparing rivaroxaban 2.5 mg twice daily combined with aspirin 100 mg once daily or rivaroxaban 5 mg twice daily vs aspirin 100 mg once daily for prevention of myocardial infarction, stroke, or cardiovascular death in patients with stable CAD or PAD. Patients not taking a proton pump inhibitor were also randomized, using a partial factorial design, to pantoprazole 40 mg once daily or placebo. The trial was designed to have at least 90% power to detect a 20% reduction in each of the rivaroxaban treatment arms compared with aspirin and to detect a 50% reduction in upper GI complications with pantoprazole compared with placebo. RESULTS: Between February 2013 and May 2016, we recruited 27,395 participants from 602 centres in 33 countries; 17,598 participants were included in the pantoprazole vs placebo comparison. At baseline, the mean age was 68.2 years, 22.0% were female, 90.6% had CAD, and 27.3% had PAD. CONCLUSIONS: COMPASS will provide information on the efficacy and safety of rivaroxaban, alone or in combination with aspirin, in the long-term management of patients with stable CAD or PAD, and on the efficacy and safety of pantoprazole in preventing upper GI complications in patients receiving antithrombotic therapy

    Rationale, Design and Baseline Characteristics of Participants in the Cardiovascular Outcomes for People Using Anticoagulation Strategies (COMPASS) Trial

    Get PDF
    Long-term aspirin prevents vascular events but is only modestly effective. Rivaroxaban alone or in combination with aspirin might be more effective than aspirin alone for vascular prevention in patients with stable coronary artery disease (CAD) or peripheral artery disease (PAD). Rivaroxaban as well as aspirin increase upper gastrointestinal (GI) bleeding and this might be prevented by proton pump inhibitor therapy. Cardiovascular Outcomes for People Using Anticoagulation Strategies (COMPASS) is a double-blind superiority trial comparing rivaroxaban 2.5 mg twice daily combined with aspirin 100 mg once daily or rivaroxaban 5 mg twice daily vs aspirin 100 mg once daily for prevention of myocardial infarction, stroke, or cardiovascular death in patients with stable CAD or PAD. Patients not taking a proton pump inhibitor were also randomized, using a partial factorial design, to pantoprazole 40 mg once daily or placebo. The trial was designed to have at least 90% power to detect a 20% reduction in each of the rivaroxaban treatment arms compared with aspirin and to detect a 50% reduction in upper GI complications with pantoprazole compared with placebo. Between February 2013 and May 2016, we recruited 27,395 participants from 602 centres in 33 countries; 17,598 participants were included in the pantoprazole vs placebo comparison. At baseline, the mean age was 68.2 years, 22.0% were female, 90.6% had CAD, and 27.3% had PAD. COMPASS will provide information on the efficacy and safety of rivaroxaban, alone or in combination with aspirin, in the long-term management of patients with stable CAD or PAD, and on the efficacy and safety of pantoprazole in preventing upper GI complications in patients receiving antithrombotic therapy
    corecore