132 research outputs found

    Obstacles to Success of Students with Autism Spectrum Disorder in General Education Settings

    Get PDF
    The purpose of this study was to survey teacher opinions of 14 potential obstacles to teaching in general education classes attended by students with autism spectrum disorder (ASD). The anonymous participant responses were received from 16 elementary school teachers, 60 middle school teachers, and 131 high school teachers. Participants completed a questionnaire in which they rated 14 items. Rating data were uploaded to STATA data analysis software. The Kruskal-Wallis (K-W) statistic was used to analyze and interpret the data. Results identified items that significantly discriminated among teachers of the three grade levels and show a difference in the perceptions of teachers at different grade levels for some obstacles. Teachers at the elementary school level generally perceived greater obstacles than teachers at the middle school level, who perceived greater obstacles than those at the high school level. The results can be considered by educators and service providers when identifying professional development topics and resources to assist educators and service providers in the provision of instruction to maximize the potential for academic and social success for students with ASD in general education settings

    T-Cell activation: a queuing theory analysis at low agonist density

    Get PDF
    We analyze a simple linear triggering model of the T-cell receptor (TCR) within the framework of queuing theory, in which TCRs enter the queue upon full activation and exit by downregulation. We fit our model to four experimentally characterized threshold activation criteria and analyze their specificity and sensitivity: the initial calcium spike, cytotoxicity, immunological synapse formation, and cytokine secretion. Specificity characteristics improve as the time window for detection increases, saturating for time periods on the timescale of downregulation; thus, the calcium spike (30 s) has low specificity but a sensitivity to single-peptide MHC ligands, while the cytokine threshold (1 h) can distinguish ligands with a 30% variation in the complex lifetime. However, a robustness analysis shows that these properties are degraded when the queue parameters are subject to variation—for example, under stochasticity in the ligand number in the cell-cell interface and population variation in the cellular threshold. A time integration of the queue over a period of hours is shown to be able to control parameter noise efficiently for realistic parameter values when integrated over sufficiently long time periods (hours), the discrimination characteristics being determined by the TCR signal cascade kinetics (a kinetic proofreading scheme). Therefore, through a combination of thresholds and signal integration, a T cell can be responsive to low ligand density and specific to agonist quality. We suggest that multiple threshold mechanisms are employed to establish the conditions for efficient signal integration, i.e., coordinate the formation of a stable contact interface

    Activating mutations of STAT5B and STAT3 in lymphomas derived from γδ-T or NK cells

    Get PDF
    Lymphomas arising from NK or γδ-T cells are very aggressive diseases and little is known regarding their pathogenesis. Here we report frequent activating mutations of STAT3 and STAT5B in NK/T-cell lymphomas (n=51), γδ-T-cell lymphomas (n=43) and their cell lines (n=9) through next generation and/or Sanger sequencing. STAT5B N642H is particularly frequent in all forms of γδ-T-cell lymphomas. STAT3 and STAT5B mutations are associated with increased phosphorylated protein and a growth advantage to transduced cell lines or normal NK cells. Growth-promoting activity of the mutants can be partially inhibited by a JAK1/2 inhibitor. Molecular modelling and surface plasmon resonance measurements of the N642H mutant indicate a marked increase in binding affinity of the phosphotyrosine-Y699 with the mutant histidine. This is associated with the prolonged persistence of the mutant phosphoSTAT5B and marked increase of binding to target sites. Our findings suggest that JAK-STAT pathway inhibition may represent a therapeutic strategy. © 2015 Macmillan Publishers Limited. All rights reserved

    Effects of Epitope Modification on T Cell Receptor–Ligand Binding and Antigen Recognition by Seven H-2Kd–restricted Cytotoxic T Lymphocyte Clones Specific for a Photoreactive Peptide Derivative

    Get PDF
    We tested for antigen recognition and T cell receptor (TCR)–ligand binding 12 peptide derivative variants on seven H-2Kd–restricted cytotoxic T lymphocytes (CTL) clones specific for a bifunctional photoreactive derivative of the Plasmodium berghei circumsporozoite peptide 252– 260 (SYIPSAEKI). The derivative contained iodo-4-azidosalicylic acid in place of PbCS S-252 and 4-azidobenzoic acid on PbCS K-259. Selective photoactivation of the N-terminal photoreactive group allowed crosslinking to Kd molecules and photoactivation of the orthogonal group to TCR. TCR photoaffinity labeling with covalent Kd–peptide derivative complexes allowed direct assessment of TCR–ligand binding on living CTL. In most cases (over 80%) cytotoxicity (chromium release) and TCR–ligand binding differed by less than fivefold. The exceptions included (a) partial TCR agonists (8 cases), for which antigen recognition was fivetenfold less efficient than TCR–ligand binding, (b) TCR antagonists (2 cases), which were not recognized and capable of inhibiting recognition of the wild-type conjugate, (c) heteroclitic agonists (2 cases), for which antigen recognition was more efficient than TCR–ligand binding, and (d) one partial TCR agonist, which activated only Fas (CD95), but not perforin/granzymemediated cytotoxicity. There was no correlation between these divergences and the avidity of TCR–ligand binding, indicating that other factors than binding avidity determine the nature of the CTL response. An unexpected and novel finding was that CD8-dependent clones clearly incline more to TCR antagonism than CD8-independent ones. As there was no correlation between CD8 dependence and the avidity of TCR–ligand binding, the possibility is suggested that CD8 plays a critical role in aberrant CTL function

    First passage events in biological systems with non-exponential inter-event times

    Get PDF
    It is often possible to model the dynamics of biological systems as a series of discrete transitions between a finite set of observable states (or compartments). When the residence times in each state, or inter-event times more generally, are exponentially distributed, then one can write a set of ordinary differential equations, which accurately describe the evolution of mean quantities. Non-exponential inter-event times can also be experimentally observed, but are more difficult to analyse mathematically. In this paper, we focus on the computation of first passage events and their probabilities in biological systems with non-exponential inter-event times. We show, with three case studies from Molecular Immunology, Virology and Epidemiology, that significant errors are introduced when drawing conclusions based on the assumption that inter-event times are exponentially distributed. Our approach allows these errors to be avoided with the use of phase-type distributions that approximate arbitrarily distributed inter-event times

    Genome-wide miRNAprofiling of mantle cell lymphoma reveals a distinct subgroup with poor prognosis

    Get PDF
    miRNA deregulation has been implicated in the pathogenesis of mantle cell lymphoma (MCL). Using a high-throughput quantitative real-time PCR platform, we performed miRNA profiling on cyclin D1–positive MCL (n = 30) and cyclin D1–negative MCL (n =7) and compared them with small lymphocytic leukemia/ lymphoma (n =12), aggressive B-cell lymphomas (n =138), normal B-cell subsets, and stromal cells.We identified a 19-miRNA classifier that included 6 up-regulated miRNAs and 13 down regulated miRNA that was able to distinguish MCL from other aggressive lymphomas. Some of the up-regulated miRNAs are highly expressed in naive B cells. This miRNAclassifier showed consistent results in formalinfixed paraffin-embedded tissues and was able to distinguish cyclin D1–negative MCL from other lymphomas. A 26-miRNA classifier could distinguish MCL from small lymphocytic leukemia/lymphoma, dominated by 23 up-regulated miRNAs in MCL. Unsupervised hierarchical clustering of MCL patients demonstrated a cluster characterized by high expression of miRNAs from the polycistronic miR17-92 cluster and its paralogs, miR-106a-363 and miR-106b-25, and associated with high proliferation gene signature. The other clusters showed enrichment of stroma-associated miRNAs, and also had higher expression of stroma-associated genes. Our clinical outcome analysis in the present study suggested that miRNAs can serve as prognosticators

    Id genes are essential for early heart formation

    Get PDF
    Deciphering the fundamental mechanisms controlling cardiac specification is critical for our understanding of how heart formation is initiated during embryonic development and for applying stem cell biology to regenerative medicine and disease modeling. Using systematic and unbiased functional screening approaches, we discovered that the Id family of helix–loop–helix proteins is both necessary and sufficient to direct cardiac mesoderm formation in frog embryos and human embryonic stem cells. Mechanistically, Id proteins specify cardiac cell fate by repressing two inhibitors of cardiogenic mesoderm formation—Tcf3 and Foxa2—and activating inducers Evx1, Grrp1, and Mesp1. Most importantly, CRISPR/Cas9-mediated ablation of the entire Id (Id1–4) family in mouse embryos leads to failure of anterior cardiac progenitor specification and the development of heartless embryos. Thus, Id proteins play a central and evolutionarily conserved role during heart formation and provide a novel means to efficiently produce cardiovascular progenitors for regenerative medicine and drug discovery applications

    Conformational Proofreading: The Impact of Conformational Changes on the Specificity of Molecular Recognition

    Get PDF
    To perform recognition, molecules must locate and specifically bind their targets within a noisy biochemical environment with many look-alikes. Molecular recognition processes, especially the induced-fit mechanism, are known to involve conformational changes. This raises a basic question: Does molecular recognition gain any advantage by such conformational changes? By introducing a simple statistical-mechanics approach, we study the effect of conformation and flexibility on the quality of recognition processes. Our model relates specificity to the conformation of the participant molecules and thus suggests a possible answer: Optimal specificity is achieved when the ligand is slightly off target; that is, a conformational mismatch between the ligand and its main target improves the selectivity of the process. This indicates that deformations upon binding serve as a conformational proofreading mechanism, which may be selected for via evolution
    corecore