179 research outputs found

    Fc receptor-mediated immunity against Bordetella pertussis

    Get PDF
    The relevance of specific Abs for the induction of cellular effector functions against Bordetella pertussis was studied. IgG-opsonized B. pertussis was efficiently phagocytosed by human polymorphonuclear leukocytes (PMN). This process was mediated by the PMN IgG receptors, FcγRIIa (CD32) and FcγRIIIb (CD16), working synergistically. Furthermore, these FcγR triggered efficient PMN respiratory burst activity and mediated transfer of B. pertussis to lysosomal compartments, ultimately resulting in reduced bacterial viability. Bacteria opsonized with IgA triggered similar PMN activation via FcαR (CD89). Simultaneous engagement of FcαRI and FcγR by B. pertussis resulted in increased phagocytosis rates, compared with responses induced by either isotype alone. These data provide new insights into host immune mechanisms against B. pertussis and document a crucial role for Ig-FcR interactions in immunity to this human pathogen.Centro de Investigación y Desarrollo en Fermentaciones Industriale

    Fc receptor-mediated immunity against Bordetella pertussis

    Get PDF
    The relevance of specific Abs for the induction of cellular effector functions against Bordetella pertussis was studied. IgG-opsonized B. pertussis was efficiently phagocytosed by human polymorphonuclear leukocytes (PMN). This process was mediated by the PMN IgG receptors, FcγRIIa (CD32) and FcγRIIIb (CD16), working synergistically. Furthermore, these FcγR triggered efficient PMN respiratory burst activity and mediated transfer of B. pertussis to lysosomal compartments, ultimately resulting in reduced bacterial viability. Bacteria opsonized with IgA triggered similar PMN activation via FcαR (CD89). Simultaneous engagement of FcαRI and FcγR by B. pertussis resulted in increased phagocytosis rates, compared with responses induced by either isotype alone. These data provide new insights into host immune mechanisms against B. pertussis and document a crucial role for Ig-FcR interactions in immunity to this human pathogen.Centro de Investigación y Desarrollo en Fermentaciones Industriale

    Human health risk assessment: A case study involving heavy metal soil contamination after the flooding of the river Meuse during the winter of 1993-1994.

    Get PDF
    At the end of December 1993 and also at the end of January 1995, the river Meuse, one of the major rivers in Europe, flooded and river banks were inundated. We investigated the possible health risks of exposure to heavy metal concentrations in river bank soils resulting from the flooding of the river Meuse at the end of 1993. Soil and deposit samples and corresponding aerable and fodder crops were collected and analyzed for heavy metals. Although the soils of the floodplain of the river Meuse appeared severely polluted mainly by Cd and Zn, the heavy metal concentrations in the crops grown on these soils were within background ranges. Incidentally, the legal standard for Cd as endorsed by the Commodities Act was exceeded in wheat crops. The main exposure pathways for the general population were through the consumption of food crops grown on the river banks and through the direct ingestion of contaminated soils. For estimating potential human exposure in relation to soil pollution, we used a multiple pathway exposure model. For estimating the actual risk, we determined metal contents of vegetables grown in six experimental gardens. From this study, it can be concluded that there is a potential health risk for the river bank inhabitants as a consequence of Pb and Cd contaminations of the floodplain soils of the river Meuse, which are frequently inundated (averaged flooding frequency once every 2 years)

    Fc receptor-mediated immunity against Bordetella pertussis

    Get PDF
    The relevance of specific Abs for the induction of cellular effector functions against Bordetella pertussis was studied. IgG-opsonized B. pertussis was efficiently phagocytosed by human polymorphonuclear leukocytes (PMN). This process was mediated by the PMN IgG receptors, FcγRIIa (CD32) and FcγRIIIb (CD16), working synergistically. Furthermore, these FcγR triggered efficient PMN respiratory burst activity and mediated transfer of B. pertussis to lysosomal compartments, ultimately resulting in reduced bacterial viability. Bacteria opsonized with IgA triggered similar PMN activation via FcαR (CD89). Simultaneous engagement of FcαRI and FcγR by B. pertussis resulted in increased phagocytosis rates, compared with responses induced by either isotype alone. These data provide new insights into host immune mechanisms against B. pertussis and document a crucial role for Ig-FcR interactions in immunity to this human pathogen.Centro de Investigación y Desarrollo en Fermentaciones Industriale

    The Importance of Human FcγRI in Mediating Protection to Malaria

    Get PDF
    The success of passive immunization suggests that antibody-based therapies will be effective at controlling malaria. We describe the development of fully human antibodies specific for Plasmodium falciparum by antibody repertoire cloning from phage display libraries generated from immune Gambian adults. Although these novel reagents bind with strong affinity to malaria parasites, it remains unclear if in vitro assays are predictive of functional immunity in humans, due to the lack of suitable animal models permissive for P. falciparum. A potentially useful solution described herein allows the antimalarial efficacy of human antibodies to be determined using rodent malaria parasites transgenic for P. falciparum antigens in mice also transgenic for human Fc-receptors. These human IgG1s cured animals of an otherwise lethal malaria infection, and protection was crucially dependent on human FcγRI. This important finding documents the capacity of FcγRI to mediate potent antimalaria immunity and supports the development of FcγRI-directed therapy for human malaria

    Combination antiretroviral therapy and the risk of myocardial infarction

    Get PDF

    On being a good Bayesian

    Get PDF
    Bayesianism is fast becoming the dominant paradigm in archaeological chronology construction. This paradigm shift has been brought about in large part by widespread access to tailored computer software which provides users with powerful tools for complex statistical inference with little need to learn about statistical modelling or computer programming. As a result, we run the risk that such software will be reduced to the status of black boxes. This would be a dangerous position for our community since good, principled use of Bayesian methods requires mindfulness when selecting the initial model, defining prior information, checking the reliability and sensitivity of the software runs and interpreting the results obtained. In this article, we provide users with a brief review of the nature of the care required and offer some comments and suggestions to help ensure that our community continues to be respected for its philosophically rigorous scientific approach

    Neutrophils kill antibody-opsonized cancer cells by trogoptosis

    Get PDF
    Destruction of cancer cells by therapeutic antibodies occurs, at least in part, through antibody-dependent cellular cytotoxicity (ADCC), and this can be mediated by various Fc-receptor-expressing immune cells, including neutrophils. However, the mechanism(s) by which neutrophils kill antibody-opsonized cancer cells has not been established. Here, we demonstrate that neutrophils can exert a mode of destruction of cancer cells, which involves antibody-mediated trogocytosis by neutrophils. Intimately associated with this is an active mechanical disruption of the cancer cell plasma membrane, leading to a lytic (i.e., necrotic) type of cancer cell death. Furthermore, this mode of destruction of antibody-opsonized cancer cells by neutrophils is potentiated by CD47-SIRPa checkpoint blockade. Collectively, these findings show that neutrophil ADCC toward cancer cells occurs by a mechanism of cytotoxicity called trogoptosis, which can be further improved by targeting CD47-SIRPa interactions

    The NOX toolbox: validating the role of NADPH oxidases in physiology and disease

    Get PDF
    Reactive oxygen species (ROS) are cellular signals but also disease triggers; their relative excess (oxidative stress) or shortage (reductive stress) compared to reducing equivalents are potentially deleterious. This may explain why antioxidants fail to combat diseases that correlate with oxidative stress. Instead, targeting of disease-relevant enzymatic ROS sources that leaves physiological ROS signaling unaffected may be more beneficial. NADPH oxidases are the only known enzyme family with the sole function to produce ROS. Of the catalytic NADPH oxidase subunits (NOX), NOX4 is the most widely distributed isoform. We provide here a critical review of the currently available experimental tools to assess the role of NOX and especially NOX4, i.e. knock-out mice, siRNAs, antibodies, and pharmacological inhibitors. We then focus on the characterization of the small molecule NADPH oxidase inhibitor, VAS2870, in vitro and in vivo, its specificity, selectivity, and possible mechanism of action. Finally, we discuss the validation of NOX4 as a potential therapeutic target for indications including stroke, heart failure, and fibrosis
    corecore