369 research outputs found
Soliton form factors from lattice simulations
The form factor provides a convenient way to describe properties of
topological solitons in the full quantum theory, when semiclassical concepts
are not applicable. It is demonstrated that the form factor can be calculated
numerically using lattice Monte Carlo simulations. The approach is very general
and can be applied to essentially any type of soliton. The technique is
illustrated by calculating the kink form factor near the critical point in
1+1-dimensional scalar field theory. As expected from universality arguments,
the result agrees with the exactly calculable scaling form factor of the
two-dimensional Ising model.Comment: 5 pages, 3 figures; v2: discussion extended, references added,
version accepted for publication in PR
Observation of Resonant Diffusive Radiation in Random Multilayered Systems
Diffusive Radiation is a new type of radiation predicted to occur in randomly
inhomogeneous media due to the multiple scattering of pseudophotons. This
theoretical effect is now observed experimentally. The radiation is generated
by the passage of electrons of energy 200KeV-2.2MeV through a random stack of
films in the visible light region. The radiation intensity increases resonantly
provided the Cherenkov condition is satisfied for the average dielectric
constant of the medium. The observed angular dependence and electron resonance
energy are in agreement with the theoretical predictions. These observations
open a road to application of diffusive radiation in particle detection,
astrophysics, soft X-ray generation and etc.. `Comment: 4pages, 4figure
Cherenkov Radiation from Pairs and Its Effect on Induced Showers
We calculate the Cherenkov radiation from an pair at small
separations, as occurs shortly after a pair conversion. The radiation is
reduced (compared to that from two independent particles) when the pair
separation is smaller than the wavelength of the emitted light. We estimate the
reduction in light in large electromagnetic showers, and discuss the
implications for detectors that observe Cherenkov radiation from showers in the
Earth's atmosphere, as well as in oceans and Antarctic ice.Comment: Final version, with minor changes, to appear in PRD. 5 pages with 4
figure
Effect of Disorder on Ultrafast Exciton Dynamics Probed by Single Molecule Spectroscopy
We present a single-molecule study unraveling the effect of static disorder on the vibrational-assisted ultrafast exciton dynamics in multichromophoric systems. For every single complex, we probe the initial exciton relaxation process by an ultrafast pump-probe approach and the coupling to vibrational modes by emission spectra, while fluorescence lifetime analysis measures the amount of static disorder. Exploiting the wide range of disorder found from complex to complex, we demonstrate that static disorder accelerates the dephasing and energy relaxation rate of the exciton
Slow group velocity and Cherenkov radiation
We theoretically study the effect of ultraslow group velocities on the
emission of Vavilov-Cherenkov radiation in a coherently driven medium. We show
that in this case the aperture of the group cone on which the intensity of the
radiation peaks is much smaller than that of the usual wave cone associated
with the Cherenkov coherence condition. We show that such a singular behaviour
may be observed in a coherently driven ultracold atomic gas.Comment: 4 pages, 4 figure
A beta-alpha coincidence counting system for measurement of trace quantities of 238U and 232Th in aqueous samples at the Sudbury Neutrino Observatory
The Sudbury Neutrino Observatory experiment was built to measure the total flux of 8B solar neutrinos via the neutral current disintegration deuterium nuclei. This process can be mimicked by daughter isotopes of 232Th and 238U which can photo-disintegrate the deuterium nucleus. Measurement of the concentration of such radioisotopes in the heavy water was critical to the success of the experiment. A radium assay technique using Hydrous Titanium Oxide coated filters was developed for this purpose and it was used in conjunction with a delayed beta-alpha coincidence counting system. The design, calibration and operation of this counting system are described in this paper. The counting efficiency for 232Th (224Ra) and 238U (226Ra) were measured to be 50 +/- 5% and 62 +/- 7
Linear optical properties of one-dimensional Frenkel exciton systems with intersite energy correlations
We analyze the effects of intersite energy correlations on the linear optical
properties of one-dimensional disordered Frenkel exciton systems. The
absorption line width and the factor of radiative rate enhancement are studied
as a function of the correlation length of the disorder. The absorption line
width monotonously approaches the seeding degree of disorder on increasing the
correlation length. On the contrary, the factor of radiative rate enhancement
shows a non-monotonous trend, indicating a complicated scenario of the exciton
localization in correlated systems. The concept of coherently bound molecules
is exploited to explain the numerical results, showing good agreement with
theory. Some recent experiments are discussed in the light of the present
theory.Comment: 18 pages, 3 figues, REVTeX, to appear in Physical Review
A Search for Ultra-High Energy Counterparts to Gamma-Ray Bursts
A small air shower array operating over many years has been used to search
for ultra-high energy (UHE) gamma radiation ( TeV) associated with
gamma-ray bursts (GRBs) detected by the BATSE instrument on the Compton
Gamma-Ray Observatory (CGRO). Upper limits for a one minute interval after each
burst are presented for seven GRBs located with zenith angles . A excess over background was observed between 10 and
20 minutes following the onset of a GRB on 11 May 1991. The confidence level
that this is due to a real effect and not a background fluctuation is 99.8\%.
If this effect is real then cosmological models are excluded for this burst
because of absorption of UHE gamma rays by the intergalactic radiation fields.Comment: 4 pages LaTeX with one postscript figure. This version does not use
kluwer.sty and will allow automatic postscript generatio
Self-amplified Cherenkov radiation from a relativistic electron in a waveguide partially filled with a laminated material
The radiation from a relativistic electron uniformly moving along the axis of
cylindrical waveguide filled with laminated material of finite length is
investigated. Expressions for the spectral distribution of radiation passing
throw the transverse section of waveguide at large distances from the laminated
material are derived with no limitations on the amplitude and variation profile
of the layered medium permittivity and permeability. Numerical results for
layered material consisting of dielectric plates alternated with vacuum gaps
are given. It is shown that at a special choice of problem parameters,
Cherenkov radiation generated by the relativistic electron inside the plates is
self-amplified. The visual explanation of this effect is given and a possible
application is discussed.Comment: 8 pages, 4 figures,1 table, the paper is accepted for publication in
the Journal of Physics: Conference Serie
Coherent Cherenkov radiation as an intense THz source
Diffraction and Cherenkov radiation of relativistic electrons from a dielectric target has been proposed as mechanism for production of intense terahertz (THz) radiation. The use of an extremely short high-energy electron beam of a 4th generation light source (X-ray free electron laser) appears to be very promising. A moderate power from the electron beam can be extracted and converted into THz radiation with nearly zero absorption losses. The initial experiment on THz observation will be performed at CLARA/VELA FEL test facility in the UK to demonstrate the principle to a wider community and to develop the radiator prototype. In this paper, we present our theoretical predictions (based on the approach of polarization currents), which provides the basis for interpreting the future experimental measurements. We will also present our hardware design and discuss a plan of the future experiment
- …