369 research outputs found

    Soliton form factors from lattice simulations

    Full text link
    The form factor provides a convenient way to describe properties of topological solitons in the full quantum theory, when semiclassical concepts are not applicable. It is demonstrated that the form factor can be calculated numerically using lattice Monte Carlo simulations. The approach is very general and can be applied to essentially any type of soliton. The technique is illustrated by calculating the kink form factor near the critical point in 1+1-dimensional scalar field theory. As expected from universality arguments, the result agrees with the exactly calculable scaling form factor of the two-dimensional Ising model.Comment: 5 pages, 3 figures; v2: discussion extended, references added, version accepted for publication in PR

    Observation of Resonant Diffusive Radiation in Random Multilayered Systems

    Full text link
    Diffusive Radiation is a new type of radiation predicted to occur in randomly inhomogeneous media due to the multiple scattering of pseudophotons. This theoretical effect is now observed experimentally. The radiation is generated by the passage of electrons of energy 200KeV-2.2MeV through a random stack of films in the visible light region. The radiation intensity increases resonantly provided the Cherenkov condition is satisfied for the average dielectric constant of the medium. The observed angular dependence and electron resonance energy are in agreement with the theoretical predictions. These observations open a road to application of diffusive radiation in particle detection, astrophysics, soft X-ray generation and etc.. `Comment: 4pages, 4figure

    Cherenkov Radiation from e+ee^+e^- Pairs and Its Effect on νe\nu_e Induced Showers

    Full text link
    We calculate the Cherenkov radiation from an e+ee^+e^- pair at small separations, as occurs shortly after a pair conversion. The radiation is reduced (compared to that from two independent particles) when the pair separation is smaller than the wavelength of the emitted light. We estimate the reduction in light in large electromagnetic showers, and discuss the implications for detectors that observe Cherenkov radiation from showers in the Earth's atmosphere, as well as in oceans and Antarctic ice.Comment: Final version, with minor changes, to appear in PRD. 5 pages with 4 figure

    Effect of Disorder on Ultrafast Exciton Dynamics Probed by Single Molecule Spectroscopy

    Get PDF
    We present a single-molecule study unraveling the effect of static disorder on the vibrational-assisted ultrafast exciton dynamics in multichromophoric systems. For every single complex, we probe the initial exciton relaxation process by an ultrafast pump-probe approach and the coupling to vibrational modes by emission spectra, while fluorescence lifetime analysis measures the amount of static disorder. Exploiting the wide range of disorder found from complex to complex, we demonstrate that static disorder accelerates the dephasing and energy relaxation rate of the exciton

    Slow group velocity and Cherenkov radiation

    Get PDF
    We theoretically study the effect of ultraslow group velocities on the emission of Vavilov-Cherenkov radiation in a coherently driven medium. We show that in this case the aperture of the group cone on which the intensity of the radiation peaks is much smaller than that of the usual wave cone associated with the Cherenkov coherence condition. We show that such a singular behaviour may be observed in a coherently driven ultracold atomic gas.Comment: 4 pages, 4 figure

    A beta-alpha coincidence counting system for measurement of trace quantities of 238U and 232Th in aqueous samples at the Sudbury Neutrino Observatory

    Get PDF
    The Sudbury Neutrino Observatory experiment was built to measure the total flux of 8B solar neutrinos via the neutral current disintegration deuterium nuclei. This process can be mimicked by daughter isotopes of 232Th and 238U which can photo-disintegrate the deuterium nucleus. Measurement of the concentration of such radioisotopes in the heavy water was critical to the success of the experiment. A radium assay technique using Hydrous Titanium Oxide coated filters was developed for this purpose and it was used in conjunction with a delayed beta-alpha coincidence counting system. The design, calibration and operation of this counting system are described in this paper. The counting efficiency for 232Th (224Ra) and 238U (226Ra) were measured to be 50 +/- 5% and 62 +/- 7

    Linear optical properties of one-dimensional Frenkel exciton systems with intersite energy correlations

    Get PDF
    We analyze the effects of intersite energy correlations on the linear optical properties of one-dimensional disordered Frenkel exciton systems. The absorption line width and the factor of radiative rate enhancement are studied as a function of the correlation length of the disorder. The absorption line width monotonously approaches the seeding degree of disorder on increasing the correlation length. On the contrary, the factor of radiative rate enhancement shows a non-monotonous trend, indicating a complicated scenario of the exciton localization in correlated systems. The concept of coherently bound molecules is exploited to explain the numerical results, showing good agreement with theory. Some recent experiments are discussed in the light of the present theory.Comment: 18 pages, 3 figues, REVTeX, to appear in Physical Review

    A Search for Ultra-High Energy Counterparts to Gamma-Ray Bursts

    Get PDF
    A small air shower array operating over many years has been used to search for ultra-high energy (UHE) gamma radiation (50\geq 50 TeV) associated with gamma-ray bursts (GRBs) detected by the BATSE instrument on the Compton Gamma-Ray Observatory (CGRO). Upper limits for a one minute interval after each burst are presented for seven GRBs located with zenith angles θ<20\theta < 20^{\circ}. A 4.3σ4.3\sigma excess over background was observed between 10 and 20 minutes following the onset of a GRB on 11 May 1991. The confidence level that this is due to a real effect and not a background fluctuation is 99.8\%. If this effect is real then cosmological models are excluded for this burst because of absorption of UHE gamma rays by the intergalactic radiation fields.Comment: 4 pages LaTeX with one postscript figure. This version does not use kluwer.sty and will allow automatic postscript generatio

    Self-amplified Cherenkov radiation from a relativistic electron in a waveguide partially filled with a laminated material

    Full text link
    The radiation from a relativistic electron uniformly moving along the axis of cylindrical waveguide filled with laminated material of finite length is investigated. Expressions for the spectral distribution of radiation passing throw the transverse section of waveguide at large distances from the laminated material are derived with no limitations on the amplitude and variation profile of the layered medium permittivity and permeability. Numerical results for layered material consisting of dielectric plates alternated with vacuum gaps are given. It is shown that at a special choice of problem parameters, Cherenkov radiation generated by the relativistic electron inside the plates is self-amplified. The visual explanation of this effect is given and a possible application is discussed.Comment: 8 pages, 4 figures,1 table, the paper is accepted for publication in the Journal of Physics: Conference Serie

    Coherent Cherenkov radiation as an intense THz source

    Get PDF
    Diffraction and Cherenkov radiation of relativistic electrons from a dielectric target has been proposed as mechanism for production of intense terahertz (THz) radiation. The use of an extremely short high-energy electron beam of a 4th generation light source (X-ray free electron laser) appears to be very promising. A moderate power from the electron beam can be extracted and converted into THz radiation with nearly zero absorption losses. The initial experiment on THz observation will be performed at CLARA/VELA FEL test facility in the UK to demonstrate the principle to a wider community and to develop the radiator prototype. In this paper, we present our theoretical predictions (based on the approach of polarization currents), which provides the basis for interpreting the future experimental measurements. We will also present our hardware design and discuss a plan of the future experiment
    corecore