149 research outputs found

    Alternative Computational Protocols for Supercharging Protein Surfaces for Reversible Unfolding and Retention of Stability

    Get PDF
    Bryan S. Der, Ron Jacak, Brian Kuhlman, Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of AmericaChristien Kluwe, Aleksandr E. Miklos, Andrew D. Ellington , Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas, United States of AmericaChristien Kluwe, Aleksandr E. Miklos, George Georgiou, Andrew D. Ellington, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of AmericaAleksandr E. Miklos, Andrew D. Ellington , Applied Research Laboratories, University of Texas at Austin, Austin, Texas, United States of AmericaSergey Lyskov, Jeffrey J. Gray, Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, United States of AmericaBrian Kuhlman, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of AmericaReengineering protein surfaces to exhibit high net charge, referred to as “supercharging”, can improve reversibility of unfolding by preventing aggregation of partially unfolded states. Incorporation of charged side chains should be optimized while considering structural and energetic consequences, as numerous mutations and accumulation of like-charges can also destabilize the native state. A previously demonstrated approach deterministically mutates flexible polar residues (amino acids DERKNQ) with the fewest average neighboring atoms per side chain atom (AvNAPSA). Our approach uses Rosetta-based energy calculations to choose the surface mutations. Both protocols are available for use through the ROSIE web server. The automated Rosetta and AvNAPSA approaches for supercharging choose dissimilar mutations, raising an interesting division in surface charging strategy. Rosetta-supercharged variants of GFP (RscG) ranging from −11 to −61 and +7 to +58 were experimentally tested, and for comparison, we re-tested the previously developed AvNAPSA-supercharged variants of GFP (AscG) with +36 and −30 net charge. Mid-charge variants demonstrated ~3-fold improvement in refolding with retention of stability. However, as we pushed to higher net charges, expression and soluble yield decreased, indicating that net charge or mutational load may be limiting factors. Interestingly, the two different approaches resulted in GFP variants with similar refolding properties. Our results show that there are multiple sets of residues that can be mutated to successfully supercharge a protein, and combining alternative supercharge protocols with experimental testing can be an effective approach for charge-based improvement to refolding.This work was supported by the Defense Advanced Research Projects Agency (HR-0011-10-1-0052 to A.E.) and the Welch Foundation (F-1654 to A.E.), the National Institutes of Health grants GM073960 (B.K.) and R01-GM073151 (J.G. and S.L.), the Rosetta Commons (S.L.), the National Science Foundation graduate research fellowship (2009070950 to B.D.), the UNC Royster Society Pogue fellowship (B.D.), and National Institutes of Health grant T32GM008570 for the UNC Program in Molecular and Cellular Biophysics. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Center for Systems and Synthetic BiologyCellular and Molecular BiologyApplied Research LaboratoriesEmail: [email protected]

    Serverification of Molecular Modeling Applications: the Rosetta Online Server that Includes Everyone (ROSIE)

    Get PDF
    The Rosetta molecular modeling software package provides experimentally tested and rapidly evolving tools for the 3D structure prediction and high-resolution design of proteins, nucleic acids, and a growing number of non-natural polymers. Despite its free availability to academic users and improving documentation, use of Rosetta has largely remained confined to developers and their immediate collaborators due to the code's difficulty of use, the requirement for large computational resources, and the unavailability of servers for most of the Rosetta applications. Here, we present a unified web framework for Rosetta applications called ROSIE (Rosetta Online Server that Includes Everyone). ROSIE provides (a) a common user interface for Rosetta protocols, (b) a stable application programming interface for developers to add additional protocols, (c) a flexible back-end to allow leveraging of computer cluster resources shared by RosettaCommons member institutions, and (d) centralized administration by the RosettaCommons to ensure continuous maintenance. This paper describes the ROSIE server infrastructure, a step-by-step 'serverification' protocol for use by Rosetta developers, and the deployment of the first nine ROSIE applications by six separate developer teams: Docking, RNA de novo, ERRASER, Antibody, Sequence Tolerance, Supercharge, Beta peptide design, NCBB design, and VIP redesign. As illustrated by the number and diversity of these applications, ROSIE offers a general and speedy paradigm for serverification of Rosetta applications that incurs negligible cost to developers and lowers barriers to Rosetta use for the broader biological community. ROSIE is available at http://rosie.rosettacommons.org

    Structure and Development of Flowers and Inflorescences in Burmannia (Burmanniaceae, Dioscoreales)

    Full text link
    Species of the genus Burmannia possess distinctive and highly elaborated flowers with prominent floral tubes that often bear large longitudinal wings. Complicated floral structure of Burmannia hampers understanding its floral evolutionary morphology and biology of the genus. In addition, information on structural features believed to be taxonomically important is lacking for some species. Here we provide an investigation of flowers and inflorescences of Burmannia based on a comprehensive sampling that included eight species with various lifestyles (autotrophic, partially mycoheterotrophic and mycoheterotrophic). We describe the diversity of inflorescence architecture in the genus: a basic (most likely, ancestral) inflorescence type is a thyrsoid comprising two cincinni, which is transformed into a botryoid in some species via reduction of the lateral cymes to single flowers. Burmannia oblonga differs from all the other studied species in having an adaxial (vs. transversal) floral prophyll. For the first time, we describe in detail early floral development in Burmannia. We report presence of the inner tepal lobes in B. oblonga, a species with reportedly absent inner tepals; the growth of the inner tepal lobes is arrested after the middle stage of floral development of this species, and therefore they are undetectable in a mature flower. Floral vasculature in Burmannia varies to reflect the variation of the size of the inner tepal lobes; in B. oblonga with the most reduced inner tepals their vascular supply is completely lost. The gynoecium consists of synascidiate, symplicate, and asymplicate zones. The symplicate zone is secondarily trilocular (except for its distal portion in some of the species) without visible traces of postgenital fusion, which prevented earlier researchers to correctly identify the zones within a definitive ovary. The placentas occupy the entire symplicate zone and a short distal portion of the synascidiate zone. Finally, we revealed an unexpected diversity of stamen-style interactions in Burmannia. In all species studied, the stamens are tightly arranged around the common style to occlude the flower entrance. However, in some species the stamens are free from the common style, whereas in the others the stamen connectives are postgenitally fused with the common style, which results in formation of a gynostegium

    Evolution of oxygen-ion and proton conductivity in Ca-Doped Ln2Zr2O7 (Ln = Sm, Gd), located near pyrochlore fluorite phase boundary

    Get PDF
    Sm2-xCaxZr2O7-x/2 (x = 0, 0.05, 0.1) and Gd2-xCaxZr2O7-x/2 (x = 0.05, 0.1) mixed oxides in a pyrochlore-fluorite morphotropic phase region were prepared via the mechanical activation of oxide mixtures, followed by annealing at 1600 ?C. The structure of the solid solutions was studied by X-ray diffraction and refined by the Rietveld method, water content was determined by thermogravimetry (TG), their bulk and grain-boundary conductivity was determined by impedance spectroscopy in dry and wet air (100-900 ?C), and their total conductivity was measured as a function of oxygen partial pressure in the temperature range: 700-950 ?C. The Sm2-xCaxZr2O7-x/2 (x = 0.05, 0.1) pyrochlore solid solutions, lying near the morphotropic phase boundary, have proton conductivity contribution both in the grain bulk and on grain boundaries below 600 ?C, and pure oxygen-ion conductivity above 700 ?C. The 500 ?C proton conductivity contribution of Sm2-xCaxZr2O7-x/2 (x = 0.05, 0.1) is ~ 1 ? 10-4 S/cm. The fluorite-like Gd2-xCaxZr2O7-x/2 (x = 0.1) solid solution has oxygen-ion bulk conductivity in entire temperature range studied, whereas proton transport contributes to its grain-boundary conductivity below 700 ?C. As a result, of the morphotropic phase transition from pyrochlore Sm2-xCaxZr2O7-x/2 (x = 0.05, 0.1) to fluorite-like Gd2-xCaxZr2O7-x/2 (x = 0.05, 0.1), the bulk proton conductivity disappears and oxygen-ion conductivity decreases. The loss of bulk proton conductivity of Gd2-xCaxZr2O7-x/2 (x = 0.05, 0.1) can be associated with the fluorite structure formation. It is important to note that the degree of Ca substitution in such solid solutions (Ln2-xCax)Zr2O7-? (Ln = Sm, Gd) is low, x < 0.1. In both series, grain-boundary conductivity usually exceeds bulk conductivity. The high grain-boundary proton conductivity of Ln2-xCaxZr2O7-x/2 (Ln = Sm, Gd; x = 0.1) is attributable to the formation of an intergranular CaZrO3-based cubic perovskite phase doped with Sm or Gd in Zr sublattice. ? 2019 by the authors.371C-9F16-EBDE | Eduarda GomesN/

    Combining machine learning with structurebased protein design to predict and engineer post-Translational modifications of proteins

    Get PDF
    Post-Translational modifications (PTMs) of proteins play a vital role in their function and stability. These modifications influence protein folding, signaling, protein-protein interactions, enzyme activity, binding affinity, aggregation, degradation, and much more. To date, over 400 types of PTMs have been described, representing chemical diversity well beyond the genetically encoded amino acids. Such modifications pose a challenge to the successful design of proteins, but also represent a major opportunity to diversify the protein engineering toolbox. To this end, we first trained artificial neural networks (ANNs) to predict eighteen of the most abundant PTMs, including protein glycosylation, phosphorylation, methylation, and deamidation. In a second step, these models were implemented inside the computational protein modeling suite Rosetta, which allows flexible combination with existing protocols to model the modified sites and understand their impact on protein stability as well as function. Lastly, we developed a new design protocol that either maximizes or minimizes the predicted probability of a particular site being modified. We find that this combination of ANN prediction and structure-based design can enable the modification of existing, as well as the introduction of novel, PTMs. The potential applications of our work include, but are not limited to, glycan masking of epitopes, strengthening protein-protein interactions through phosphorylation, as well as protecting proteins from deamidation liabilities. These applications are especially important for the design of new protein therapeutics where PTMs can drastically change the therapeutic properties of a protein. Our work adds novel tools to Rosetta s protein engineering toolbox that allow for the rational design of PTMs

    The RosettaDock server for local protein–protein docking

    Get PDF
    The RosettaDock server (http://rosettadock.graylab.jhu.edu) identifies low-energy conformations of a protein–protein interaction near a given starting configuration by optimizing rigid-body orientation and side-chain conformations. The server requires two protein structures as inputs and a starting location for the search. RosettaDock generates 1000 independent structures, and the server returns pictures, coordinate files and detailed scoring information for the 10 top-scoring models. A plot of the total energy of each of the 1000 models created shows the presence or absence of an energetic binding funnel. RosettaDock has been validated on the docking benchmark set and through the Critical Assessment of PRedicted Interactions blind prediction challenge

    Real-Time PyMOL Visualization for Rosetta and PyRosetta

    Get PDF
    Computational structure prediction and design of proteins and protein-protein complexes have long been inaccessible to those not directly involved in the field. A key missing component has been the ability to visualize the progress of calculations to better understand them. Rosetta is one simulation suite that would benefit from a robust real-time visualization solution. Several tools exist for the sole purpose of visualizing biomolecules; one of the most popular tools, PyMOL (Schrödinger), is a powerful, highly extensible, user friendly, and attractive package. Integrating Rosetta and PyMOL directly has many technical and logistical obstacles inhibiting usage. To circumvent these issues, we developed a novel solution based on transmitting biomolecular structure and energy information via UDP sockets. Rosetta and PyMOL run as separate processes, thereby avoiding many technical obstacles while visualizing information on-demand in real-time. When Rosetta detects changes in the structure of a protein, new coordinates are sent over a UDP network socket to a PyMOL instance running a UDP socket listener. PyMOL then interprets and displays the molecule. This implementation also allows remote execution of Rosetta. When combined with PyRosetta, this visualization solution provides an interactive environment for protein structure prediction and design

    Molecular Modeling-Based Evaluation of hTLR10 and Identification of Potential Ligands in Toll-Like Receptor Signaling

    Get PDF
    Toll-like receptors (TLRs) are pattern recognition receptors that recognize pathogens based on distinct molecular signatures. The human (h)TLR1, 2, 6 and 10 belong to the hTLR1 subfamilies, which are localized in the extracellular regions and activated in response to diverse ligand molecules. Due to the unavailability of the hTLR10 crystal structure, the understanding of its homo and heterodimerization with hTLR2 and hTLR1 and the ligand responsible for its activation is limited. To improve our understanding of the TLR10 receptor-ligand interaction, we used homology modeling to construct a three dimensional (3D) structure of hTLR10 and refined the model through molecular dynamics (MD) simulations. We utilized the optimized structures for the molecular docking in order to identify the potential site of interactions between the homo and heterodimer (hTLR10/2 and hTLR10/1). The docked complexes were then used for interaction with ligands (Pam3CSK4 and PamCysPamSK4) using MOE-Dock and ASEDock. Our docking studies have shown the binding orientations of hTLR10 heterodimer to be similar with other TLR2 family members. However, the binding orientation of hTLR10 homodimer is different from the heterodimer due to the presence of negative charged surfaces at the LRR11-14, thereby providing a specific cavity for ligand binding. Moreover, the multiple protein-ligand docking approach revealed that Pam3CSK4 might be the ligand for the hTLR10/2 complex and PamCysPamSK4, a di-acylated peptide, might activate hTLR10/1 hetero and hTLR10 homodimer. Therefore, the current modeled complexes can be a useful tool for further experimental studies on TLR biology

    Freqüência de infecção por Toxocara em crianças atendidas em serviço público de Maringá, sul do Brasil

    Get PDF
    The lack of specific laboratorial diagnosis methods and precise symptoms makes the toxocariasis a neglected disease in Public Health Services. This study aims to determine the frequency of Toxocara spp. infection in children attended by the Health Public Service of Hospital Municipal de Maringá, South Brazil. To evaluate the association of epidemiological and clinical data, an observational and cross-section study was carried out. From 14,690 attended children/year aged from seven month to 12 years old, 450 serum samples were randomly collected from September/2004 to September/2005. A questionnaire was used to evaluate epidemiological, clinical and hematological data. An ELISA using Toxocara canis larval excretory-secretory products as antigen detected 130 (28.8%) positive sera, mainly between children from seven month to five years old (p = 0.0016). Significant correlation was observed between positive serology for Toxocara, and frequent playing in sandbox at school or daycare center (p = 0.011) and the presence of a cat at home (p = 0.056). From the families, 50% were dog owners which exposed soil backyards. Eosinophilia (p = 0.776), and signs and symptoms analyzed (fever p = 0.992, pneumonia p = 0.289, cold-like symptoms p = 0.277, cough p = 0.783, gastrointestinal problems p = 0.877, migraine p = 0.979, abdominal pain p = 0.965, joint pain p = 0.686 and skin rash p = 0.105) could not be related to the presence of anti-Toxocara antibodies. Therefore, two asthmatics children showed titles of 1:10,240 and accentuated eosinophilia (p = 0.0001). The authors emphasize the needs of prevention activities.A falta de métodos de diagnóstico laboratorial específico e sintomas específicos fazem da toxocaríase uma doença negligenciada nos serviços públicos de saúde. Este estudo teve por objetivo determinar a freqüência de infecção por Toxocara spp. em crianças atendidas no serviço público do Hospital Municipal de Maringá, sul do Brasil, e avaliar a associação com dados epidemiológicos e clínicos, em estudo observacional e transversal. De 14.690 crianças/ano atendidas, com idade entre sete meses a 12 anos, foram coletados 450 soros de setembro/2004 a setembro/2005. Um questionário foi utilizado para avaliar dados epidemiológicos, clínicos e hematológicos. Pelo teste ELISA, com antígeno de excreção/secreção de larvas de Toxocara canis, detectou-se 130 (28,8%) soros positivos, principalmente em crianças entre sete meses e cinco anos (p = 0,0016). Houve significante correlação entre sorologia positiva para Toxocara e freqüente recreação das crianças em caixas de areia da escola ou pré escola (p = 0,011) e presença do gato no domicilio (p = 0,056). Das famílias dessas crianças, 50% possuíam cachorros e o quintal com solo exposto. Eosinofilia (p = 0,776), sinais e sintomas (febre p = 0,992, pneumonia p = 0,289, resfriado p = 0,277, tosse p = 0,783, problema gastrointestinal p = 0877, dor de cabeça p = 0,979, dor abdominal p = 0,965, dores articulares p = 0,686, urticária p = 0,105) não se correlacionaram com a soropositividade. Todavia, duas crianças asmáticas apresentaram títulos de 1:10.240 (>; 1:320) e acentuada eosinofilia (p = 0.0001). Os autores enfatizam a necessidade de atividades preventivas
    corecore