670 research outputs found

    J Community Health

    Get PDF
    Alzheimer's disease (AD) is the fourth leading cause of death in Puerto Rico. Using multi-media resources and in-person education may be an effective approach to improve knowledge and awareness of AD. The Un Caf\uc3\ua9 por el Alzheimer program in Puerto Rico incorporates an education component at coffee shops and a social media campaign using Facebook. The current study evaluates this initiative through an analysis of pre/post education survey results and social media content and use. Surveys contained close-ended and open-ended questions to understand participants' perceptions and knowledge about AD. Post-education surveys also included questions related to program satisfaction. Social media analysis of the Facebook community page examined posts from March 1 to September 30, 2015. Descriptive statistics were used to analyze survey and Facebook data. Four education sessions were conducted with a total of 212 participants. Fifty-one of the participants completed both pre- and post-surveys. Following the education program participants reported improved knowledge of risk and protective factors. All participants reported learning new information from the program. There were a total of 250 posts on the Un Caf\uc3\ua9 por el Alzheimer community Facebook page; 168 posts related to AD. The Facebook page reached 294,109 people, with 9963 page likes, 610 comments, 17,780 post clicks, and 3632 shares. There was an average increase of 64.8\uc2\ua0% in number of people reached by the Facebook page following the education sessions. The approach of combining social media resources and in-person education is beneficial to increase public awareness of AD and disseminate health information.U48 DP005000/DP/NCCDPHP CDC HHS/United States2016-10-01T00:00:00Z26983930PMC501143

    Sorting live stem cells based on Sox2 mRNA expression.

    Get PDF
    PMCID: PMC3507951This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.While cell sorting usually relies on cell-surface protein markers, molecular beacons (MBs) offer the potential to sort cells based on the presence of any expressed mRNA and in principle could be extremely useful to sort rare cell populations from primary isolates. We show here how stem cells can be purified from mixed cell populations by sorting based on MBs. Specifically, we designed molecular beacons targeting Sox2, a well-known stem cell marker for murine embryonic (mES) and neural stem cells (NSC). One of our designed molecular beacons displayed an increase in fluorescence compared to a nonspecific molecular beacon both in vitro and in vivo when tested in mES and NSCs. We sorted Sox2-MB(+)SSEA1(+) cells from a mixed population of 4-day retinoic acid-treated mES cells and effectively isolated live undifferentiated stem cells. Additionally, Sox2-MB(+) cells isolated from primary mouse brains were sorted and generated neurospheres with higher efficiency than Sox2-MB(-) cells. These results demonstrate the utility of MBs for stem cell sorting in an mRNA-specific manner

    Living biointerfaces based on non-pathogenic bacteria to direct cell differentiation

    Get PDF
    Genetically modified Lactococcus lactis, non-pathogenic bacteria expressing the FNIII7-10 fibronectin fragment as a protein membrane have been used to create a living biointerface between synthetic materials and mammalian cells. This FNIII7-10 fragment comprises the RGD and PHSRN sequences of fibronectin to bind α5β1 integrins and triggers signalling for cell adhesion, spreading and differentiation. We used L. lactis strain to colonize material surfaces and produce stable biofilms presenting the FNIII7-10 fragment readily available to cells. Biofilm density is easily tunable and remains stable for several days. Murine C2C12 myoblasts seeded over mature biofilms undergo bipolar alignment and form differentiated myotubes, a process triggered by the FNIII7-10 fragment. This biointerface based on living bacteria can be further modified to express any desired biochemical signal, establishing a new paradigm in biomaterial surface functionalisation for biomedical applications

    Extracellular Matrix Aggregates from Differentiating Embryoid Bodies as a Scaffold to Support ESC Proliferation and Differentiation

    Get PDF
    Embryonic stem cells (ESCs) have emerged as potential cell sources for tissue engineering and regeneration owing to its virtually unlimited replicative capacity and the potential to differentiate into a variety of cell types. Current differentiation strategies primarily involve various growth factor/inducer/repressor concoctions with less emphasis on the substrate. Developing biomaterials to promote stem cell proliferation and differentiation could aid in the realization of this goal. Extracellular matrix (ECM) components are important physiological regulators, and can provide cues to direct ESC expansion and differentiation. ECM undergoes constant remodeling with surrounding cells to accommodate specific developmental event. In this study, using ESC derived aggregates called embryoid bodies (EB) as a model, we characterized the biological nature of ECM in EB after exposure to different treatments: spontaneously differentiated and retinoic acid treated (denoted as SPT and RA, respectively). Next, we extracted this treatment-specific ECM by detergent decellularization methods (Triton X-100, DOC and SDS are compared). The resulting EB ECM scaffolds were seeded with undifferentiated ESCs using a novel cell seeding strategy, and the behavior of ESCs was studied. Our results showed that the optimized protocol efficiently removes cells while retaining crucial ECM and biochemical components. Decellularized ECM from SPT EB gave rise to a more favorable microenvironment for promoting ESC attachment, proliferation, and early differentiation, compared to native EB and decellularized ECM from RA EB. These findings suggest that various treatment conditions allow the formulation of unique ESC-ECM derived scaffolds to enhance ESC bioactivities, including proliferation and differentiation for tissue regeneration applications. © 2013 Goh et al

    Selective laser melting–enabled electrospinning: Introducing complexity within electrospun membranes

    Get PDF
    Additive manufacturing technologies enable the creation of very precise and well-defined structures that can mimic hierarchical features of natural tissues. In this article, we describe the development of a manufacturing technology platform to produce innovative biodegradable membranes that are enhanced with controlled microenvironments produced via a combination of selective laser melting techniques and conventional electrospinning. This work underpins the manufacture of a new generation of biomaterial devices that have significant potential for use as both basic research tools and components of therapeutic implants. The membranes were successfully manufactured and a total of three microenvironment designs (niches) were chosen for thorough characterisation. Scanning electron microscopy analysis demonstrated differences in fibre diameters within different areas of the niche structures as well as differences in fibre density. We also showed the potential of using the microfabricated membranes for supporting mesenchymal stromal cell culture and proliferation. We demonstrated that mesenchymal stromal cells grow and populate the membranes penetrating within the niche-like structures. These findings demonstrate the creation of a very versatile tool that can be used in a variety of tissue regeneration applications including bone healing

    ISSCR standards for the use of human stem cells in basic research.

    Get PDF
    The laboratory culture of human stem cells seeks to capture a cellular state as an in vitro surrogate of a biological system. For the results and outputs from this research to be accurate, meaningful, and durable, standards that ensure reproducibility and reliability of the data should be applied. Although such standards have been previously proposed for repositories and distribution centers, no widely accepted best practices exist for laboratory research with human pluripotent and tissue stem cells. To fill that void, the International Society for Stem Cell Research has developed a set of recommendations, including reporting criteria, for scientists in basic research laboratories. These criteria are designed to be technically and financially feasible and, when implemented, enhance the reproducibility and rigor of stem cell research

    Regulation of Epithelial Cell Morphology and Functions Approaching To More In Vivo-Like by Modifying Polyethylene Glycol on Polysulfone Membranes

    Get PDF
    Cytocompatibility is critically important in design of biomaterials for application in tissue engineering. However, the currently well-accepted “cytocompatible" biomaterials are those which promote cells to sustain good attachment/spreading. The cells on such materials usually lack the self-assembled cell morphology and high cell functions as in vivo. In our view, biomaterials that can promote the ability of cells to self-assemble and demonstrate cell-specific functions would be cytocompatible. This paper examined the interaction of polyethylene glycol (PEG) modified polysulfone (PSf) membranes with four epithelial cell types (primary liver cells, a liver tumor cell line, and two renal tubular cell lines). Our results show that PSf membranes modified with proper PEG promoted the aggregation of both liver and renal cells, but the liver cells more easily formed aggregates than the renal tubular cells. The culture on PEG-modified PSf membranes also enhanced cell-specific functions. In particular, the cells cultured on F127 membranes with the proper PEG content mimicked the in vivo ultrastructure of liver cells or renal tubules cells and displayed the highest cell functions. Gene expression data for adhesion proteins suggest that the PEG modification impaired cell-membrane interactions and increased cell-cell interactions, thus facilitating cell self-assembly. In conclusion, PEG-modified membrane could be a cytocompatible material which regulates the morphology and functions of epithelial cells in mimicking cell performance in vivo
    corecore