861 research outputs found

    Fingering Convection in Red Giants Revisited

    Get PDF
    Fingering (thermohaline) convection has been invoked for several years as a possible extra-mixing which could occur in Red Giant stars due to the modification of the chemical composition induced by nuclear reactions in the hydrogen burning zone. Recent studies show however that this mixing is not sufficient to account for the needed surface abundances. A new prescription for fingering convection, based on 3D numerical simulations has recently been proposed (BGS). The resulting mixing coefficient is larger than the ones previously given in the literature. We compute models using this new coefficient and compare them to previous studies. We use the LPCODE stellar evolution code with the GNA generalized version of the mixing length theory to compute Red Giant models and we introduce fingering convection using the BGS prescription. The results show that, although the fingering zone now reaches the outer dynamical convective zone, the efficiency of the mixing is not enough to account for the observations. The fingering mixing coefficient should be increased by two orders of magnitude for the needed surface abundances to be reached. We confirm that fingering convection cannot be the mixing process needed to account for surface abundances in RGB stars.Comment: Accepted for publication in Astronomy and Astrophysic

    Lyman-alpha wing absorption in cool white dwarf stars

    Full text link
    Kowalski & Saumon (2006) identified the missing absorption mechanism in the observed spectra of cool white dwarf stars as the Ly-alpha red wing formed by the collisions between atomic and molecular hydrogen and successfully explained entire spectra of many cool DA-type white dwarfs. Owing to the important astrophysical implications of this issue, we present here an independent assessment of the process. For this purpose, we compute free-free quasi-molecular absorption in Lyman-alpha due to collisions with H and H2 within the one-perturber, quasi-static approximation. Line cross-sections are obtained using theoretical molecular potentials to describe the interaction between the radiating atom and the perturber. The variation of the electric-dipole transition moment with the interparticle distance is also considered. Six and two allowed electric dipole transitions due to H-H and H-H2 collisions, respectively, are taken into account. The new theoretical Lyman-alpha line profiles are then incorporated in our stellar atmosphere program for the computation of synthetic spectra and colours of DA-type white dwarfs. Illustrative model atmospheres and spectral energy distributions are computed, which show that Ly-alpha broadening by atoms and molecules has a significant effect on the white dwarf atmosphere models. The inclusion of this collision-induced opacity significantly reddens spectral energy distributions and affects the broadband colour indices for model atmospheres with Teff<5000 K. These results confirm those previously obtained by Kowalski & Saumon (2006). Our study points out the need for reliable evaluations of H3 potential energy surfaces covering a large region of nuclear configurations, in order to obtain a better description of H-H2 collisions and a more accurate evaluation of their influence on the spectrum of cool white dwarfs.Comment: 11 pages, 12 figures, 1 table, to be published in MNRA

    Revisiting the luminosity function of single halo white dwarfs

    Get PDF
    White dwarfs are the fossils left by the evolution of low-and intermediate-mass stars, and have very long evolutionary timescales. This allows us to use them to explore the properties of old populations, like the Galactic halo. We present a population synthesis study of the luminosity function of halo white dwarfs, aimed at investigating which information can be derived from the currently available observed data. We employ an up-to-date population synthesis code based on Monte Carlo techniques, that incorporates the most recent and reliable cooling sequences for metal poor progenitors as well as an accurate modeling of the observational biases. We find that because the observed sample of halo white dwarfs is restricted to the brightest stars only the hot branch of the white dwarf luminosity function can be used for such purposes, and that its shape function is almost insensitive to the most relevant inputs, like the adopted cooling sequences, the initial mass function, the density profile of the stellar spheroid, or the adopted fraction of unresolved binaries. Moreover, since the cut-off of the observed luminosity has not been yet determined only lower limits to the age of the halo population can be placed. We conclude that the current observed sample of the halo white dwarf population is still too small to obtain definite conclusions about the properties of the stellar halo, and the recently computed white dwarf cooling sequences which incorporate residual hydrogen burning should be assessed using metal-poor globular clusters.Comment: 9 pages, 9 figures, accepted for publication in A&

    Asteroseismological study of massive ZZ Ceti stars with fully evolutionary models

    Get PDF
    We present the first asteroseismological study for 42 massive ZZ Ceti stars based on a large set of fully evolutionary carbon-oxygen core DA white dwarf models characterized by a detailed and consistent chemical inner profile for the core and the envelope. Our sample comprise all the ZZ Ceti stars with spectroscopic stellar masses between 0.72 and 1.05M1.05M_{\odot} known to date. The asteroseismological analysis of a set of 42 stars gives the possibility to study the ensemble properties of the massive pulsating white dwarf stars with carbon-oxygen cores, in particular the thickness of the hydrogen envelope and the stellar mass. A significant fraction of stars in our sample have stellar mass high enough as to crystallize at the effective temperatures of the ZZ Ceti instability strip, which enables us to study the effects of crystallization on the pulsation properties of these stars. Our results show that the phase diagram presented in Horowitz et al. (2010) seems to be a good representation of the crystallization process inside white dwarf stars, in agreement with the results from white dwarf luminosity function in globular clusters.Comment: 58 pages, 11 figures, accepted in Ap

    On the origin of white dwarfs with carbon-dominated atmospheres: the case of H1504+65

    Get PDF
    We explore different evolutionary scenarios to explain the helium deficiency observed in H1504+65, the most massive known PG1159 star. We concentrate mainly on the possibility that this star could be the result of mass loss shortly after the born-again and during the subsequent evolution through the [WCL] stage. This possibility is sustained by recent observational evidence of extensive mass-loss events in Sakurai's object and is in line with the recent finding that such mass losses give rise to PG1159 models with thin helium-rich envelopes and large rates of period change, as demanded by the pulsating star PG1159-035. We compute the post born again evolution of massive sequences by taking into account different mass-loss rate histories. Our results show that stationary winds during the post-born-again evolution fail to remove completely the helium-rich envelope so as to explain the helium deficiency observed in H1504+65. Stationary winds during the Sakurai and [WCL] stages only remove at most half of the envelope surviving the violent hydrogen burning during the born-again phase. In view of our results, the recently suggested evolutionary connection born-again stars --> H1504+65 --> white dwarfs with carbon-rich atmospheres is difficult to sustain unless the whole helium-rich envelope could be ejected by non-stationary mass-loss episodes during the Sakurai stage.Comment: 5 pages, 2 figures. To be published in Astronomy & Astrophysic

    Probing the internal rotation of pre-white dwarf stars with asteroseismology: the case of PG 122+200

    Get PDF
    We put asteroseismological constraints on the internal rotation profile of the GW Vir (PG1159-type) star PG 0122+200. To this end we employ a state-of-the-art asteroseismological model for this star and we assess the expected frequency splittings induced by rotation adopting a forward approach in which we compare the theoretical frequency separations with the observed ones assuming different types of plausible internal rotation profiles. We also employ two asteroseismological inversion methods for the inversion of the rotation profile of PG 0122+200. We find evidence for differential rotation in this star. We demonstrate that the frequency splittings of the rotational multiplets exhibited by PG 0122+200 are compatible with a rotation profile in which the central regions are spinning about 2.4 times faster than the stellar surface.Comment: 8 pages, 6 figures, 2 tables. To be published in MNRA

    On the possible existence of short-period g-mode instabilities powered by nuclear burning shells in post-AGB H-deficient (PG1159-type) stars

    Get PDF
    We present a pulsational stability analysis of hot post-AGB H-deficient pre-white dwarf stars with active He-burning shells. The stellar models employed are state-of-the-art equilibrium structures representative of PG1159 stars derived from the complete evolution of the progenitor stars. On the basis of fully nonadiabatic pulsation computations, we confirmed theoretical evidence for the existence of a separate PG1159 instability strip in the logTefflogg\log T_{\rm eff} - \log g diagram characterized by short-period gg-modes excited by the ϵ\epsilon-mechanism. This instability strip partially overlaps the already known GW Vir instability strip of intermediate/long period gg-modes destabilized by the classical κ\kappa-mechanism acting on the partial ionization of C and/or O in the envelope of PG1159 stars. We found that PG1159 stars characterized by thick He-rich envelopes and located inside this overlapping region could exhibit both short and intermediate/long periods simultaneously. we study the particular case of VV 47, a pulsating planetary nebula nucleus that has been reported to exhibit a series of unusually short pulsation periods. We found that the long periods exhibited by VV 47 can be readily explained by the classical κ\kappa-mechanism, while the observed short-period branch below 300\approx 300 s could correspond to modes triggered by the He-burning shell through the ϵ\epsilon-mechanism, although more observational work is needed to confirm the reality of these short-period modes. Were the existence of short-period gg-modes in this star convincingly confirmed by future observations, VV 47 could be the first known pulsating star in which both the κ\kappa-mechanism and the ϵ\epsilon-mechanism of mode driving are simultaneously operating.Comment: 9 pages, 5 figures, 2 tables. To be published in The Astrophysical Journa

    Seismological constraints on the high-gravity DOV stars PG2131+066 and PG 1707+427

    Get PDF
    A seismological study of the pulsating PG1159 stars PG2131+066 and PG 1707+427 is presented. We perform extensive adiabatic computations of g-mode pulsation periods of PG1159 evolutionary models with stellar masses ranging from 0.530 to 0.741 Msun. We constrain the stellar mass of PG2131+066 and PG 1707+427 by comparing the observed period spacing of each star with the theoretical asymptotic period spacings and with the average of the computed period spacings. We also employ the individual observed periods to find representative seismological models for both stars.Comment: Proceedings, 16th European White Dwarf Workshop, Barcelona, 200
    corecore