10 research outputs found

    Towards an alternative testing strategy for nanomaterials used in nanomedicine: lessons from NanoTEST.

    Get PDF
    In spite of recent advances in describing the health outcomes of exposure to nanoparticles (NPs), it still remains unclear how exactly NPs interact with their cellular targets. Size, surface, mass, geometry, and composition may all play a beneficial role as well as causing toxicity. Concerns of scientists, politicians and the public about potential health hazards associated with NPs need to be answered. With the variety of exposure routes available, there is potential for NPs to reach every organ in the body but we know little about the impact this might have. The main objective of the FP7 NanoTEST project ( www.nanotest-fp7.eu ) was a better understanding of mechanisms of interactions of NPs employed in nanomedicine with cells, tissues and organs and to address critical issues relating to toxicity testing especially with respect to alternatives to tests on animals. Here we describe an approach towards alternative testing strategies for hazard and risk assessment of nanomaterials, highlighting the adaptation of standard methods demanded by the special physicochemical features of nanomaterials and bioavailability studies. The work has assessed a broad range of toxicity tests, cell models and NP types and concentrations taking into account the inherent impact of NP properties and the effects of changes in experimental conditions using well-characterized NPs. The results of the studies have been used to generate recommendations for a suitable and robust testing strategy which can be applied to new medical NPs as they are developed

    DNA repair and cyclin D1 polymorphisms and styrene-induced genotoxicity and immunotoxicity.

    No full text
    1-SO-adenine DNA adducts, DNA single-strand breaks (SBs), chromosomal aberrations (CAs), mutant frequency (MF) at the HPRT gene, and immune parameters (hematological and of humoral immunity) were studied in styrene-exposed human subjects and controls. Results were correlated with genetic polymorphisms in DNA repair genes (XPD, exon 23, XPG, exon 15, XPC, exon 15, XRCC1, exon 10, XRCC3, exon 7) and cell cycle gene cyclin D1. Results for biomarkers of genotoxicity after stratification for the different DNA repair genetic polymorphisms showed that the polymorphism in exon 23 of the XPD gene modulates levels of chromosomal and DNA damage, HPRT MF, and moderately affects DNA adduct levels. The highest levels of biomarkers were associated with the wild-type homozygous AA genotype. The exposed individuals with the wild-type GG genotype for XRCC1 gene exhibited the lowest CA frequencies, compared to those with an A allele (P < 0.05). Cyclin D1 polymorphism seems to modulate the number of leukocytes and lymphocytes in the analyzed subjects. The number of eosinophiles was positively associated with XPD variant C allele and negatively with XRCC1 variant A allele (P < 0.05) and XPC variant C allele (P < 0.05). Immunoglobulin IgA was positively associated with an XRCC3 variant T allele (P < 0.01) and negatively with XPC variant C allele (P < 0.05). Both C3- and C4-complement components were lower in individuals with XRCC3 CT (P < 0.05) and TT genotypes (P < 0.01). Adhesion molecules sL-selectin and sICAM-1 were associated with XPC genotype (P < 0.05). Individual susceptibility may be reflected in genotoxic and immunotoxic responses to environmental and occupational exposures to xenobiotics

    Ninety-day oral toxicity studies on two genetically modified maize MON810 varieties in Wistar Han RCC rats (EU 7th Framework Programme project GRACE)

    Get PDF
    The GMO Risk Assessment and Communication of Evidence (GRACE; www.grace-fp7.eu) project is funded by the European Commission within the 7th Framework Programme. A key objective of GRACE is to conduct 90-day animal feeding trials, animal studies with an extended time frame as well as analytical, in vitro and in silico studies on genetically modified (GM) maize in order to comparatively evaluate their use in GM plant risk assessment. In the present study, the results of two 90-day feeding trials with two different GM maize MON810 varieties, their near-isogenic non-GM varieties and four additional conventional maize varieties are presented. The feeding trials were performed by taking into account the guidance for such studies published by the EFSA Scientific Committee in 2011 and the OECD Test Guideline 408. The results obtained show that the MON810 maize at a level of up to 33 % in the diet did not induce adverse effects in male and female Wistar Han RCC rats after subchronic exposure, independently of the two different genetic backgrounds of the event

    Towards an alternative testing strategy for nanomaterials used in nanomedicine: Lessons from NanoTEST

    No full text
    In spite of recent advances in describing the health outcomes of exposure to nanoparticles (NPs), it still remains unclear how exactly NPs interact with their cellular targets. Size, surface, mass, geometry, and composition may all play a beneficial role as well as causing toxicity. Concerns of scientists, politicians and the public about potential health hazards associated with NPs need to be answered. With the variety of exposure routes available, there is potential for NPs to reach every organ in the body but we know little about the impact this might have. The main objective of the FP7 NanoTEST project (www.nanotest-fp7.eu) was a better understanding of mechanisms of interactions of NPs employed in nanomedicine with cells, tissues and organs and to address critical issues relating to toxicity testing especially with respect to alternatives to tests on animals. Here we describe an approach towards alternative testing strategies for hazard and risk assessment of nanomaterials, highlighting the adaptation of standard methods demanded by the special physicochemical features of nanomaterials and bioavailability studies. The work has assessed a broad range of toxicity tests, cell models and NP types and concentrations taking into account the inherent impact of NP properties and the effects of changes in experimental conditions using well-characterized NPs. The results of the studies have been used to generate recommendations for a suitable and robust testing strategy which can be applied to new medical NPs as they are developed. © 2015 Informa UK Ltd. All rights reserved: reproduction in whole or part not permitted
    corecore