527 research outputs found
Calibration and evaluation of Skylab altimetry for geodetic determination of the geoid
There are no author-identified significant results in this report
The application of Skylab altimetry to marine geoid determination
The author had identified the following significant results. The major results can be divided broadly into two groups. One group is concerned with the effects of errors inherent in the various input data, such as the orbit emphemeris, a priori geoid etc. The other consists of the results of the actual analysis of the data from the Skylab EREP passes 4, 6, 7, and 9. Results from the first group were obtained from the analysis of some preliminary data from EREP pass 9 mode 5. The second group of results consists of a set of recovered bias terms for each of the submodes of observations and a set of nine altimetry geoid profiles corresponding to the various passes and modes. Along with each of these profiles, the a priori geoid, gravity anomaly, and the bathymetric data profiles are also presented for easy comparison
The significance of the Skylab altimeter experiment results and potential applications
The Skylab Altimeter Experiment has proven the capability of the altimeter for measurement of sea surface topography. The geometric determination of the geoid/mean sea level from satellite altimetry is a new approach having significant applications in many disciplines including geodesy and oceanography. A Generalized Least Squares Collocation Technique was developed for determination of the geoid from altimetry data. The technique solves for the altimetry geoid and determines one bias term for the combined effect of sea state, orbit, tides, geoid, and instrument error using sparse ground truth data. The influence of errors in orbit and a priori geoid values are discussed. Although the Skylab altimeter instrument accuracy is about + or - 1 m, significant results were obtained in identification of large geoidal features such as over the Puerto Rico trench. Comparison of the results of several passes shows that good agreement exists between the general slopes of the altimeter geoid and the ground truth, and that the altimeter appears to be capable of providing more details than are now available with best known geoids. The altimetry geoidal profiles show excellent correlations with bathymetry and gravity. Potential applications of altimetry results to geodesy, oceanography, and geophysics are discussed
Calibration and evaluation of Skylab altimetry for geodetic determination of the geoid
The author has identified the following significant results. The Skylab altimeter experiment has proven the capability of the altimeter for measurement of sea surface topography. The geometric determination of the geoid/mean sea level from satellite altimetry is a new approach having significant applications in many disciplines including geodesy and oceanography. A generalized least squares collocation technique was developed for determination of the geoid from altimetry data. The technique solves for the altimetry geoid and determines one bias term for the combined effect of sea state, orbit, tides, geoid, and instrument error using sparse ground truth data. The influence of errors in orbit and a priori geoid values are discussed. Although the Skylab altimeter instrument accuracy is about plus or minus 1m, significant results were obtained in identification of large geoidal features such as over the Puerto Rico trench. Comparison of the results of several passes shows that good agreement exists between the general slopes of the altimeter geoid and the ground truth, and that the altimeter appears to be capable of providing more details than are now available with best known geoids
Calibration and evaluation of Skylab altimetry for geodetic determination of the geoid
There are no author-identified significant results in this report
Improved ground truth geoid for the GEOS-3 calibration area
The purpose of this investigation is to develop methods and procedures are reported for computing a detailed geoid to be used as geodetic ground truth for the calibration and verification of GEOS-3 altimeter data. The technique developed is based on rectifying the best available detailed geoid so that the rectified geoid will have correct scale, orientation, shape and position with respect to the geocenter. The approach involved the development of a mathematical model based on a second degree polynomial, in rectangular Cartesian coordinates, describing the geoid undulations at the control stations. A generalized least squares solution was obtained for the polynomial which describes the variation of the undulation differences between the control stations geoid and the gravimetric geoid. Three rectified geoid were determined. These geoids correspond to three sets of tracking station data: (1) WFC/C-band data; (2) GSFC/C-band data; and (3) OSU-275 data. The absolute accuracy of these rectified geoids is linearly correlated with the uncertainties of the tracking station coordinates and, to a certain extent, with those of the detailed geoid being rectified
The Time Machine: A Simulation Approach for Stochastic Trees
In the following paper we consider a simulation technique for stochastic
trees. One of the most important areas in computational genetics is the
calculation and subsequent maximization of the likelihood function associated
to such models. This typically consists of using importance sampling (IS) and
sequential Monte Carlo (SMC) techniques. The approach proceeds by simulating
the tree, backward in time from observed data, to a most recent common ancestor
(MRCA). However, in many cases, the computational time and variance of
estimators are often too high to make standard approaches useful. In this paper
we propose to stop the simulation, subsequently yielding biased estimates of
the likelihood surface. The bias is investigated from a theoretical point of
view. Results from simulation studies are also given to investigate the balance
between loss of accuracy, saving in computing time and variance reduction.Comment: 22 Pages, 5 Figure
Mott insulators in strong electric fields
Recent experiments on ultracold atomic gases in an optical lattice potential
have produced a Mott insulating state of Rb atoms. This state is stable to a
small applied potential gradient (an `electric' field), but a resonant response
was observed when the potential energy drop per lattice spacing (E), was close
to the repulsive interaction energy (U) between two atoms in the same lattice
potential well. We identify all states which are resonantly coupled to the Mott
insulator for E close to U via an infinitesimal tunneling amplitude between
neighboring potential wells. The strong correlation between these states is
described by an effective Hamiltonian for the resonant subspace. This
Hamiltonian exhibits quantum phase transitions associated with an Ising density
wave order, and with the appearance of superfluidity in the directions
transverse to the electric field. We suggest that the observed resonant
response is related to these transitions, and propose experiments to directly
detect the order parameters. The generalizations to electric fields applied in
different directions, and to a variety of lattices, should allow study of
numerous other correlated quantum phases.Comment: 17 pages, 14 figures; (v2) minor additions and new reference
Conformational Mechanics of Polymer Adsorption Transitions at Attractive Substrates
Conformational phases of a semiflexible off-lattice homopolymer model near an
attractive substrate are investigated by means of multicanonical computer
simulations. In our polymer-substrate model, nonbonded pairs of monomers as
well as monomers and the substrate interact via attractive van der Waals
forces. To characterize conformational phases of this hybrid system, we analyze
thermal fluctuations of energetic and structural quantities, as well as
adequate docking parameters. Introducing a solvent parameter related to the
strength of the surface attraction, we construct and discuss the
solubility-temperature phase diagram. Apart from the main phases of adsorbed
and desorbed conformations, we identify several other phase transitions such as
the freezing transition between energy-dominated crystalline low-temperature
structures and globular entropy-dominated conformations.Comment: 13 pages, 15 figure
Non-linear regression models for Approximate Bayesian Computation
Approximate Bayesian inference on the basis of summary statistics is
well-suited to complex problems for which the likelihood is either
mathematically or computationally intractable. However the methods that use
rejection suffer from the curse of dimensionality when the number of summary
statistics is increased. Here we propose a machine-learning approach to the
estimation of the posterior density by introducing two innovations. The new
method fits a nonlinear conditional heteroscedastic regression of the parameter
on the summary statistics, and then adaptively improves estimation using
importance sampling. The new algorithm is compared to the state-of-the-art
approximate Bayesian methods, and achieves considerable reduction of the
computational burden in two examples of inference in statistical genetics and
in a queueing model.Comment: 4 figures; version 3 minor changes; to appear in Statistics and
Computin
- …
