527 research outputs found

    Calibration and evaluation of Skylab altimetry for geodetic determination of the geoid

    Get PDF
    There are no author-identified significant results in this report

    The application of Skylab altimetry to marine geoid determination

    Get PDF
    The author had identified the following significant results. The major results can be divided broadly into two groups. One group is concerned with the effects of errors inherent in the various input data, such as the orbit emphemeris, a priori geoid etc. The other consists of the results of the actual analysis of the data from the Skylab EREP passes 4, 6, 7, and 9. Results from the first group were obtained from the analysis of some preliminary data from EREP pass 9 mode 5. The second group of results consists of a set of recovered bias terms for each of the submodes of observations and a set of nine altimetry geoid profiles corresponding to the various passes and modes. Along with each of these profiles, the a priori geoid, gravity anomaly, and the bathymetric data profiles are also presented for easy comparison

    The significance of the Skylab altimeter experiment results and potential applications

    Get PDF
    The Skylab Altimeter Experiment has proven the capability of the altimeter for measurement of sea surface topography. The geometric determination of the geoid/mean sea level from satellite altimetry is a new approach having significant applications in many disciplines including geodesy and oceanography. A Generalized Least Squares Collocation Technique was developed for determination of the geoid from altimetry data. The technique solves for the altimetry geoid and determines one bias term for the combined effect of sea state, orbit, tides, geoid, and instrument error using sparse ground truth data. The influence of errors in orbit and a priori geoid values are discussed. Although the Skylab altimeter instrument accuracy is about + or - 1 m, significant results were obtained in identification of large geoidal features such as over the Puerto Rico trench. Comparison of the results of several passes shows that good agreement exists between the general slopes of the altimeter geoid and the ground truth, and that the altimeter appears to be capable of providing more details than are now available with best known geoids. The altimetry geoidal profiles show excellent correlations with bathymetry and gravity. Potential applications of altimetry results to geodesy, oceanography, and geophysics are discussed

    Calibration and evaluation of Skylab altimetry for geodetic determination of the geoid

    Get PDF
    The author has identified the following significant results. The Skylab altimeter experiment has proven the capability of the altimeter for measurement of sea surface topography. The geometric determination of the geoid/mean sea level from satellite altimetry is a new approach having significant applications in many disciplines including geodesy and oceanography. A generalized least squares collocation technique was developed for determination of the geoid from altimetry data. The technique solves for the altimetry geoid and determines one bias term for the combined effect of sea state, orbit, tides, geoid, and instrument error using sparse ground truth data. The influence of errors in orbit and a priori geoid values are discussed. Although the Skylab altimeter instrument accuracy is about plus or minus 1m, significant results were obtained in identification of large geoidal features such as over the Puerto Rico trench. Comparison of the results of several passes shows that good agreement exists between the general slopes of the altimeter geoid and the ground truth, and that the altimeter appears to be capable of providing more details than are now available with best known geoids

    Calibration and evaluation of Skylab altimetry for geodetic determination of the geoid

    Get PDF
    There are no author-identified significant results in this report

    Improved ground truth geoid for the GEOS-3 calibration area

    Get PDF
    The purpose of this investigation is to develop methods and procedures are reported for computing a detailed geoid to be used as geodetic ground truth for the calibration and verification of GEOS-3 altimeter data. The technique developed is based on rectifying the best available detailed geoid so that the rectified geoid will have correct scale, orientation, shape and position with respect to the geocenter. The approach involved the development of a mathematical model based on a second degree polynomial, in rectangular Cartesian coordinates, describing the geoid undulations at the control stations. A generalized least squares solution was obtained for the polynomial which describes the variation of the undulation differences between the control stations geoid and the gravimetric geoid. Three rectified geoid were determined. These geoids correspond to three sets of tracking station data: (1) WFC/C-band data; (2) GSFC/C-band data; and (3) OSU-275 data. The absolute accuracy of these rectified geoids is linearly correlated with the uncertainties of the tracking station coordinates and, to a certain extent, with those of the detailed geoid being rectified

    The Time Machine: A Simulation Approach for Stochastic Trees

    Full text link
    In the following paper we consider a simulation technique for stochastic trees. One of the most important areas in computational genetics is the calculation and subsequent maximization of the likelihood function associated to such models. This typically consists of using importance sampling (IS) and sequential Monte Carlo (SMC) techniques. The approach proceeds by simulating the tree, backward in time from observed data, to a most recent common ancestor (MRCA). However, in many cases, the computational time and variance of estimators are often too high to make standard approaches useful. In this paper we propose to stop the simulation, subsequently yielding biased estimates of the likelihood surface. The bias is investigated from a theoretical point of view. Results from simulation studies are also given to investigate the balance between loss of accuracy, saving in computing time and variance reduction.Comment: 22 Pages, 5 Figure

    Mott insulators in strong electric fields

    Get PDF
    Recent experiments on ultracold atomic gases in an optical lattice potential have produced a Mott insulating state of Rb atoms. This state is stable to a small applied potential gradient (an `electric' field), but a resonant response was observed when the potential energy drop per lattice spacing (E), was close to the repulsive interaction energy (U) between two atoms in the same lattice potential well. We identify all states which are resonantly coupled to the Mott insulator for E close to U via an infinitesimal tunneling amplitude between neighboring potential wells. The strong correlation between these states is described by an effective Hamiltonian for the resonant subspace. This Hamiltonian exhibits quantum phase transitions associated with an Ising density wave order, and with the appearance of superfluidity in the directions transverse to the electric field. We suggest that the observed resonant response is related to these transitions, and propose experiments to directly detect the order parameters. The generalizations to electric fields applied in different directions, and to a variety of lattices, should allow study of numerous other correlated quantum phases.Comment: 17 pages, 14 figures; (v2) minor additions and new reference

    Conformational Mechanics of Polymer Adsorption Transitions at Attractive Substrates

    Full text link
    Conformational phases of a semiflexible off-lattice homopolymer model near an attractive substrate are investigated by means of multicanonical computer simulations. In our polymer-substrate model, nonbonded pairs of monomers as well as monomers and the substrate interact via attractive van der Waals forces. To characterize conformational phases of this hybrid system, we analyze thermal fluctuations of energetic and structural quantities, as well as adequate docking parameters. Introducing a solvent parameter related to the strength of the surface attraction, we construct and discuss the solubility-temperature phase diagram. Apart from the main phases of adsorbed and desorbed conformations, we identify several other phase transitions such as the freezing transition between energy-dominated crystalline low-temperature structures and globular entropy-dominated conformations.Comment: 13 pages, 15 figure

    Non-linear regression models for Approximate Bayesian Computation

    Full text link
    Approximate Bayesian inference on the basis of summary statistics is well-suited to complex problems for which the likelihood is either mathematically or computationally intractable. However the methods that use rejection suffer from the curse of dimensionality when the number of summary statistics is increased. Here we propose a machine-learning approach to the estimation of the posterior density by introducing two innovations. The new method fits a nonlinear conditional heteroscedastic regression of the parameter on the summary statistics, and then adaptively improves estimation using importance sampling. The new algorithm is compared to the state-of-the-art approximate Bayesian methods, and achieves considerable reduction of the computational burden in two examples of inference in statistical genetics and in a queueing model.Comment: 4 figures; version 3 minor changes; to appear in Statistics and Computin
    corecore