16 research outputs found

    Quantifying Asthenospheric and Lithospheric Controls on Mafic Magmatism across North Africa.

    Get PDF
    African basin‐and‐swell morphology is often attributed to the planform of subplate mantle convection. Across North Africa, the coincidence of Neogene and Quaternary (i.e., <23 Ma) magmatism, topographic swells, long wavelength gravity anomalies, and slow shear wave velocity anomalies within the asthenosphere provides observational constraints for this hypothesis. Admittance analysis of topographic and gravity fields corroborates the existence of subplate support. To investigate quantitative relationships between intraplate magmatism, shear wave velocity, and asthenospheric temperature, we collected and analyzed a suite of 224 lava samples from Tibesti, Jabal Eghei, Haruj, Sawda/Hasawinah, and Gharyan volcanic centers of Libya and Chad. Forward and inverse modeling of major, trace, and rare Earth elements was used for thermobarometric studies and to determine melt fraction as a function of depth. At each center, mafic magmatism is modeled by assuming adiabatic decompression of dry peridotite with asthenospheric potential temperatures of 1300‐1360 °C. Surprisingly, the highest temperatures are associated with the low‐lying Haruj volcanic center rather than with the more prominent Tibesti swell. Our results are consistent with earthquake tomographic models which show that the slowest shear wave anomalies within the upper mantle occur directly beneath the Haruj center. This inference is corroborated by converting observed velocities into potential temperatures, which are in good agreement with those determined by geochemical inverse modeling. Our results suggest that North African volcanic swells are primarily generated by thermal anomalies located beneath thinned lithosphere

    New Insights into the Lake Chad Basin Population Structure Revealed by High-Throughput Genotyping of Mitochondrial DNA Coding SNPs

    Get PDF
    BACKGROUND: Located in the Sudan belt, the Chad Basin forms a remarkable ecosystem, where several unique agricultural and pastoral techniques have been developed. Both from an archaeological and a genetic point of view, this region has been interpreted to be the center of a bidirectional corridor connecting West and East Africa, as well as a meeting point for populations coming from North Africa through the Saharan desert. METHODOLOGY/PRINCIPAL FINDINGS: Samples from twelve ethnic groups from the Chad Basin (n = 542) have been high-throughput genotyped for 230 coding region mitochondrial DNA (mtDNA) Single Nucleotide Polymorphisms (mtSNPs) using Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight (MALDI-TOF) mass spectrometry. This set of mtSNPs allowed for much better phylogenetic resolution than previous studies of this geographic region, enabling new insights into its population history. Notable haplogroup (hg) heterogeneity has been observed in the Chad Basin mirroring the different demographic histories of these ethnic groups. As estimated using a Bayesian framework, nomadic populations showed negative growth which was not always correlated to their estimated effective population sizes. Nomads also showed lower diversity values than sedentary groups. CONCLUSIONS/SIGNIFICANCE: Compared to sedentary population, nomads showed signals of stronger genetic drift occurring in their ancestral populations. These populations, however, retained more haplotype diversity in their hypervariable segments I (HVS-I), but not their mtSNPs, suggesting a more ancestral ethnogenesis. Whereas the nomadic population showed a higher Mediterranean influence signaled mainly by sub-lineages of M1, R0, U6, and U5, the other populations showed a more consistent sub-Saharan pattern. Although lifestyle may have an influence on diversity patterns and hg composition, analysis of molecular variance has not identified these differences. The present study indicates that analysis of mtSNPs at high resolution could be a fast and extensive approach for screening variation in population studies where labor-intensive techniques such as entire genome sequencing remain unfeasible

    Response to Comment on "Climate-Driven Ecosystem Succession in the Sahara: The Past 6000 Years"

    No full text

    Early renin-angiotensin system intervention is more beneficial than late intervention in delaying end-stage renal disease in patients with type 2 diabetes

    No full text
    Aims: To develop and validate a model to simulate progression of diabetic kidney disease (DKD) from early onset until end-stage renal disease (ESRD), and to assess the effect of renin-angiotensin system (RAS) intervention in early, intermediate and advanced stages of DKD. Methods: We used data from the BENEDICT, IRMA-2, RENAAL and IDNT trials that assessed effects of RAS intervention in patients with type 2 diabetes. We built a model with discrete disease stages based on albuminuria and estimated glomerular filtration rate (eGFR). Using survival analyses, we assessed the effect of RAS intervention on delaying ESRD in early [eGFR>60 ml/min/1.73m(2) and albumin: creatinine ratio (ACR) 300 mg/g) stages of DKD for patients in different age groups. Results: For patients at early, intermediate and advanced stage of disease, whose mean age was 60 years and who received placebo, the median time to ESRD was 21.4, 10.8 and 4.7 years, respectively. RAS intervention delayed the predicted time to ESRD by 4.2, 3.6 and 1.4 years, respectively. The benefit of early RAS intervention was more pronounced in younger patients; for example, for patients with a mean age of 45 years, RAS intervention at early, intermediate or advanced stage delayed ESRD by 5.9, 4.0 and 1.1 years versus placebo. Conclusions: RAS intervention early in the course of proteinuric DKD is more beneficial than late intervention in delaying ESRD

    Ancient Yersinia pestis genomes from across Western Europe reveal early diversification during the First Pandemic (541-750)

    No full text
    The first historically documented pandemic caused by Yersinia pestis began as the Justinianic Plague in 541 within the Roman Empire and continued as the so-called First Pandemic until 750. Although paleogenomic studies have previously identified the causative agent as Y. pestis, little is known about the bacterium's spread, diversity, and genetic history over the course of the pandemic. To elucidate the microevolution of the bacterium during this time period, we screened human remains from 21 sites in Austria, Britain, Germany, France, and Spain for Y. pestis DNA and reconstructed eight genomes. We present a methodological approach assessing single-nucleotide polymorphisms (SNPs) in ancient bacterial genomes, facilitating qualitative analyses of low coverage genomes from a metagenomic background. Phylogenetic analysis on the eight reconstructed genomes reveals the existence of previously undocumented Y. pestis diversity during the sixth to eighth centuries, and provides evidence for the presence of multiple distinct Y. pestis strains in Europe. We offer genetic evidence for the presence of the Justinianic Plague in the British Isles, previously only hypothesized from ambiguous documentary accounts, as well as the parallel occurrence of multiple derived strains in central and southern France, Spain, and southern Germany. Four of the reported strains form a polytomy similar to others seen across the Y. pestis phylogeny, associated with the Second and Third Pandemics. We identified a deletion of a 45-kb genomic region in the most recent First Pandemic strains affecting two virulence factors, intriguingly overlapping with a deletion found in 17th- to 18th-century genomes of the Second Pandemic.status: publishe
    corecore