233 research outputs found

    Alterations in regulatory T cells and immune checkpoint molecules in pancreatic cancer patients receiving FOLFIRINOX or gemcitabine plus nab-paclitaxel

    Get PDF
    PURPOSE This pilot study aimed on generating insight on alterations in circulating immune cells during the use of FOLFIRINOX and gemcitabine/nab-paclitaxel in pancreatic ductal adenocarcinoma (PDAC). PATIENTS AND METHODS Peripheral blood mononuclear cells were isolated before and 30~days after initiation of chemotherapy from 20 patients with advanced PDAC. Regulatory T cells (FoxP3+) and immune checkpoints (PD-1 and TIM-3) were analyzed by flow cytometry and immunological changes were correlated with clinical outcome. RESULTS Heterogeneous changes during chemotherapy were observed in circulating T-cell subpopulations with a pronounced effect on PD-1+ CD4+/CD8+ T cells. An increase in FoxP3+ or PD-1+ T cells had no significant effect on survival. An increase in TIM3+/CD8+ (but not TIM3+/CD4+) T cells was associated with a significant inferior outcome: median progression-free survival in the subgroup with an increase of TIM-3+/CD8+ T cells was 6.0 compared to 14.0~months in patients with a decrease/no change (p = 0.026); corresponding median overall survival was 13.0 and 20.0~months (p = 0.011), respectively. CONCLUSIONS Chemotherapy with FOLFIRNOX or gemcitabine/nab-paclitaxel induces variable changes in circulating T-cell populations that may provide prognostic information in PDAC

    Skin dendritic cells in melanoma are key for successful checkpoint blockade therapy.

    Get PDF
    BACKGROUND: Immunotherapy with checkpoint inhibitors has shown impressive results in patients with melanoma, but still many do not benefit from this line of treatment. A lack of tumor-infiltrating T cells is a common reason for therapy failure but also a loss of intratumoral dendritic cells (DCs) has been described. METHODS: We used the transgenic tg(Grm1)EPv melanoma mouse strain that develops spontaneous, slow-growing tumors to perform immunological analysis during tumor progression. With flow cytometry, the frequencies of DCs and T cells at different tumor stages and the expression of the inhibitory molecules programmed cell death protein-1 (PD-1) and T-cell immunoglobulin and mucin-domain containing-3 (TIM-3) on T cells were analyzed. This was complemented with RNA-sequencing (RNA-seq) and real-time quantitative PCR (RT-qPCR) analysis to investigate the immune status of the tumors. To boost DC numbers and function, we administered Fms-related tyrosine 3 ligand (Flt3L) plus an adjuvant mix of polyI:C and anti-CD40. To enhance T cell function, we tested several checkpoint blockade antibodies. Immunological alterations were characterized in tumor and tumor-draining lymph nodes (LNs) by flow cytometry, CyTOF, microarray and RT-qPCR to understand how immune cells can control tumor growth. The specific role of migratory skin DCs was investigated by coculture of sorted DC subsets with melanoma-specific CD8+ T cells. RESULTS: Our study revealed that tumor progression is characterized by upregulation of checkpoint molecules and a gradual loss of the dermal conventional DC (cDC) 2 subset. Monotherapy with checkpoint blockade could not restore antitumor immunity, whereas boosting DC numbers and activation increased tumor immunogenicity. This was reflected by higher numbers of activated cDC1 and cDC2 as well as CD4+ and CD8+ T cells in treated tumors. At the same time, the DC boost approach reinforced migratory dermal DC subsets to prime gp100-specific CD8+ T cells in tumor-draining LNs that expressed PD-1/TIM-3 and produced interferon γ (IFNγ)/tumor necrosis factor α (TNFα). As a consequence, the combination of the DC boost with antibodies against PD-1 and TIM-3 released the brake from T cells, leading to improved function within the tumors and delayed tumor growth. CONCLUSIONS: Our results set forth the importance of skin DC in cancer immunotherapy, and demonstrates that restoring DC function is key to enhancing tumor immunogenicity and subsequently responsiveness to checkpoint blockade therapy

    Identification of coherent flood regions across Europe by using the longest streamflow records

    Get PDF
    This study compiles a new dataset, consisting of the longest available flow series from across Europe, and uses it to study the spatial and temporal clustering of flood events across the continent. Hydrological series at 102 gauging stations were collected from 25 European countries. Five geographically distinct large-scale homogeneous regions are identified: (i) an Atlantic region, (ii) a Continental region, (iii) a Scandinavian region, (iv) an Alpine region, and (v) a Mediterranean region. The months with a higher likelihood of flooding were identified in each region. The analysis of the clustering of annual counts of floods revealed an over-dispersion in the Atlantic and Continental regions, forming flood-rich and flood-poor periods, as well as an under-dispersion in the Scandinavian region that points to a regular pattern of flood occurrences at the inter-annual scale. The detection of trends in flood series is attempted by basing it on the identified regions, interpreting the results at a regional scale and for various time periods: 1900-1999; 1920-1999; 1939-1998 and 1956-1995. The results indicate that a decreasing trend in the magnitude of floods was observed mainly in the Continental region in the period 1920-1999 with 22% of the catchments revealing such a trend, as well as a decreasing trend in the timing of floods in the Alpine region in the period 1900-1999 with 75% of the catchments revealing this trend. A mixed pattern of changes in the frequency of floods over a threshold and few significant changes in the timing of floods were detected

    Age dependency of plasma vitamin B12 status markers in Dutch children and adolescents

    Get PDF
    BACKGROUND: Vitamin B12 deficiency in children may be associated with (severe) neurological manifestations, therefore recognition is important. Diagnosing vitamin B12 deficiency in children is challenging. This study aimed to investigate plasma methylmalonic acid, holotranscobalamin, and total cobalamin in children 0–18 years of age and to estimate age-dependent reference intervals. METHODS: Plasma vitamin B12 markers were measured in collected plasma samples of 170 children 0–18 years visiting a local primary care laboratory. All had within-reference hemoglobin and MCV values. Pediatric plasma vitamin B12 biomarkers were measured and reference values were derived thereof. RESULTS: Plasma methylmalonic acid was higher in young children, in particular between 1 and 6 months of age; total cobalamin and holotranscobalamin were highest from 0.5 to 4 years and decreased till 10 years of age. Plasma holotranscobalamin was highly correlated with plasma total cobalamin; their ratio was independent of age. Plasma methylmalonic acid was slightly more related to total cobalamin than to holotranscobalamin. A large proportion of mainly young children would be misclassified when adult references are applied. CONCLUSIONS: Pediatric reference values for cobalamin markers are necessary to allow for early recognition and monitoring of children suspect of (clinical) cobalamin deficiency. IMPACT: We analyzed three plasma vitamin B12 status markers, i.e., total cobalamin, holotranscobalamin, and methylmalonic acid, in the plasma of 170 children 0–18 years of age and were able to derive reference intervals thereof. Recognition of vitamin B12 deficiency in children is important but challenging as pediatric reference intervals for plasma vitamin B12 status markers, particularly plasma holotranscobalamin, are not well described. We think that our results may help early recognition and monitoring of children suspect of (clinical) vitamin B12 deficiency

    VESPA: software to facilitate genomic annotation of prokaryotic organisms through integration of proteomic and transcriptomic data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The procedural aspects of genome sequencing and assembly have become relatively inexpensive, yet the full, accurate structural annotation of these genomes remains a challenge. Next-generation sequencing transcriptomics (RNA-Seq), global microarrays, and tandem mass spectrometry (MS/MS)-based proteomics have demonstrated immense value to genome curators as individual sources of information, however, integrating these data types to validate and improve structural annotation remains a major challenge. Current visual and statistical analytic tools are focused on a single data type, or existing software tools are retrofitted to analyze new data forms. We present Visual Exploration and Statistics to Promote Annotation (VESPA) is a new interactive visual analysis software tool focused on assisting scientists with the annotation of prokaryotic genomes though the integration of proteomics and transcriptomics data with current genome location coordinates.</p> <p>Results</p> <p>VESPA is a desktop Java™ application that integrates high-throughput proteomics data (peptide-centric) and transcriptomics (probe or RNA-Seq) data into a genomic context, all of which can be visualized at three levels of genomic resolution. Data is interrogated via searches linked to the genome visualizations to find regions with high likelihood of mis-annotation. Search results are linked to exports for further validation outside of VESPA or potential coding-regions can be analyzed concurrently with the software through interaction with BLAST. VESPA is demonstrated on two use cases (<it>Yersinia pestis </it>Pestoides F and <it>Synechococcus </it>sp. PCC 7002) to demonstrate the rapid manner in which mis-annotations can be found and explored in VESPA using either proteomics data alone, or in combination with transcriptomic data.</p> <p>Conclusions</p> <p>VESPA is an interactive visual analytics tool that integrates high-throughput data into a genomic context to facilitate the discovery of structural mis-annotations in prokaryotic genomes. Data is evaluated via visual analysis across multiple levels of genomic resolution, linked searches and interaction with existing bioinformatics tools. We highlight the novel functionality of VESPA and core programming requirements for visualization of these large heterogeneous datasets for a client-side application. The software is freely available at <url>https://www.biopilot.org/docs/Software/Vespa.php</url>.</p

    Fully three-dimensional sound speed-corrected multi-wavelength photoacoustic breast tomography

    Full text link
    Photoacoustic tomography is a contrast agent-free imaging technique capable of visualizing blood vessels and tumor-associated vascularization in breast tissue. While sophisticated breast imaging systems have been recently developed, there is yet much to be gained in imaging depth, image quality and tissue characterization capability before clinical translation is possible. In response, we have developed a hybrid photoacoustic and ultrasound-transmission tomographic system PAM3. The photoacoustic component has for the first time three-dimensional multi-wavelength imaging capability, and implements substantial technical advancements in critical hardware and software sub-systems. The ultrasound component enables for the first time, a three-dimensional sound speed map of the breast to be incorporated in photoacoustic reconstruction to correct for inhomogeneities, enabling accurate target recovery. The results demonstrate the deepest photoacoustic breast imaging to date namely 48 mm, with a more uniform field of view than hitherto, and an isotropic spatial resolution that rivals that of Magnetic Resonance Imaging. The in vivo performance achieved, and the diagnostic value of interrogating angiogenesis-driven optical contrast as well as tumor mass sound speed contrast, gives confidence in the system's clinical potential.Comment: 33 pages Main Body, 9 pages Supplementary Materia
    corecore