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Abstract: In recent years, cell-based immunotherapies have demonstrated promising results in the
treatment of cancer. Chimeric antigen receptors (CARs) arm effector cells with a weapon for targeting
tumor antigens, licensing engineered cells to recognize and kill cancer cells. The quality of the
CAR-antigen interaction strongly depends on the selected tumor antigen and its expression density
on cancer cells. CD19 CAR-engineered T cells approved by the Food and Drug Administration have
been most frequently applied in the treatment of hematological malignancies. Clinical challenges
in their application primarily include cytokine release syndrome, neurological symptoms, severe
inflammatory responses, and/or other off-target effects most likely mediated by cytotoxic T cells.
As a consequence, there remains a significant medical need for more potent technology platforms
leveraging cell-based approaches with enhanced safety profiles. A promising population that has
been advanced is the natural killer (NK) cell, which can also be engineered with CARs. NK cells
which belong to the innate arm of the immune system recognize and kill virally infected cells as
well as (stressed) cancer cells in a major histocompatibility complex I independent manner. NK cells
play an important role in the host’s immune defense against cancer due to their specialized lytic
mechanisms which include death receptor (i.e., Fas)/death receptor ligand (i.e., Fas ligand) and
granzyme B/perforin-mediated apoptosis, and antibody-dependent cellular cytotoxicity, as well as
their immunoregulatory potential via cytokine/chemokine release. To develop and implement a
highly effective CAR NK cell-based therapy with low side effects, the following three principles which
are specifically addressed in this review have to be considered: unique target selection, well-designed
CAR, and optimized gene delivery.

Keywords: immunotherapy; natural killer cells; chimeric antigen receptor; tumor antigen; gene delivery

1. Introduction

Cancer is a major health burden and mortality rates continue to increase worldwide.
Despite aggressive treatment regimens consisting of surgery, radio-/chemotherapy, and
small molecule/targeted therapies in different combinations, overall survival of patients
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with late-stage tumors remains mostly poor. Therefore, there is an urgent need for more
specific and effective therapies that cause fewer complications [1]. Our immune system
has a natural capacity to prevent tumor progression which involves cytokine/chemokine
release, as well as antibody or cell-based mechanisms leading to cancer cell death. However,
the tumor and its microenvironment have developed escape mechanisms which limit the
capacity of the immune system to effectively fight malignant cells [2]. The inception of can-
cer immunotherapy has heralded a paradigm shift towards unleashing or reprogramming
immune responses to boost the efficacy of host anti-tumor reactions. Successful examples
include combatting checkpoint inhibition of T cells using blocking antibodies, and the use
of bispecific ‘engager’ antibody constructs [3,4].

Adoptive cell therapy (ACT) is based on the infusion of immunologically active
and tumor-specific effector cells that seek and recognize cancer cells in a patient with a
therapeutic intention. ACT has evolved from bench-to-bedside due to an increased under-
standing of tumor biology and general immunological principles [3,5,6]. The introduction
of chimeric antigen receptor (CAR) technology has enabled the adoptive transfer of im-
mune cells to become a more practical approach [7,8]. To date, T cells have been the most
commonly engineered cell type, especially by CAR [7] and the current developments in
CAR T cell-based therapies have greatly improved the scope of modern, targeted cancer
therapy [9]. Among others, the US Food and Drug Administration (FDA) has approved
several CD19-directed CAR T cell therapeutic products for the treatment of hematologi-
cal malignancies, such as types of B cell lymphomas and acute lymphoblastic leukemia
(ALL) [7]. In 2021, B cell maturation antigen (BCMA)-directed CAR T cells were approved
for treating multiple myeloma (MM) [10]. However, challenges originating from CAR T cell
therapy such as their relatively high cost and time-consuming production, insufficient traf-
ficking to solid tumors, induced cytotoxic effects including immune effector cell-associated
neurologic syndrome (ICANS) and cytokine release syndrome (CRS), have emerged as
clinically relevant challenges that can only be managed in experienced centers [11,12].
Accordingly, it is important to mitigate against these problems while safeguarding and
enhancing CAR activity. Among other immune cell platforms (e.g., γ/δ T cells, NKT cells,
and macrophages), natural killer (NK) cells have been considered as a potential alternative
for genetic engineering with CARs [13]. CARs have been successfully engineered into NK
cells, and their efficacy has been tested in preclinical and early clinical studies [8]. CAR
NK cells exhibit several advantages over CAR T cells which have the potential to enhance
effectiveness and safety. The first clinical use of CD19 CAR NK cells in patients suffering
from relapsed/refractory lymphoid malignancies demonstrated a persistence of CAR NK
cells with encouraging remission rates and clinical responses [14,15]. The high potential of
NK cell-mediated killing can be related to CAR-dependent mechanisms and their ability to
engage cancer cells via CAR-independent mechanisms. However, depending on the study
design, the CAR NK cell product alone could not be directly compared to conventional
CAR T cells, and all but one patient who responded with a complete remission had either
concomitantly or subsequently received additional therapies [14]. Considering that safety
is an important parameter for clinical application, it was suggested that CAR NK cells
can reduce the risk for some life-threatening complications, such as severe inflammatory
reactions which frequently occur upon CAR T cell infusions [15]. Importantly, due to the
reduced risk of graft versus host disease (GVHD), CARs can be introduced into allogeneic
NK cells and thereby provide multiple potent “off-the-shelf” sources for a safe cell-based
adoptive immunotherapy [8].

Despite encouraging outcomes of CAR NK cell therapies in hematological diseases,
concerns still exist regarding the low transfection capacities of NK cells, the choice of “off-
the-shelf” NK cell sources, and the specificity of the CAR for target recognition, especially
in antigen-heterogeneous malignancies. Several other challenges such as tumor resistance
driven by antigen escape mechanisms and low infiltration rates into solid tumors can
also impair the CAR therapy outcome [16–18]. Optimal CAR efficiency can be supported
via a precise structural design paired with a rational selection of CAR targets based on
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the expression density of the antigen on the tumor cell. The CAR structure and surface
localization on effector cells affect the binding affinity, immune synapse formation, and
subsequent immune cell activation [19]. The efficiency and safety of CAR cell therapy also
depend on the tumor-specificity of the chosen antigen, as the occurrence of off-target effects
is mostly attributed to on-target off-tumor immune responses [20]. Moreover, an optimized
CAR structure requires a carrier that sufficiently transmits the expression message. Since
hematopoietic cells, such as NK cells are among the cell types which are not easy to be
transfected in vitro and in vivo, systems are required which allow not only an optimized,
but also safe gene transfer while keeping the costs and the burden of manufacturing under
GMP conditions at a minimum [21].

In this review, we briefly discuss the unique properties of NK cells which support
the promise of CAR NK cells in cellular immunotherapy. The review focusses on three
major topics which are important for a successful CAR NK cell therapy: (i) production of
well-designed CARs, (ii) selection of the correct tumor-specific/tumor-associated antigen
as a target, and (iii) optimal engineering of NK cells by efficient CAR delivery.

2. NK Cells—A Promising Cellular Platform for CAR Engineering

The success of CAR cell-based immunotherapies is highly dependent on the biological
features of the effector cell population used for genetic engineering because the CAR
aims to specifically direct and boost their cytotoxicity potential. Among different types of
immune cells, NK cells have gained major interest in adoptive immunotherapies given
their inherent non-major histocompatibility complex (MHC)-restricted cytotoxic potential
against different malignancies (Figure 1) [16,17].

Cells 2021, 10, x FOR PEER REVIEW 3 of 28 
 

 

in antigen-heterogeneous malignancies. Several other challenges such as tumor resistance 
driven by antigen escape mechanisms and low infiltration rates into solid tumors can also 
impair the CAR therapy outcome [16–18]. Optimal CAR efficiency can be supported via a 
precise structural design paired with a rational selection of CAR targets based on the ex-
pression density of the antigen on the tumor cell. The CAR structure and surface localiza-
tion on effector cells affect the binding affinity, immune synapse formation, and subse-
quent immune cell activation [19]. The efficiency and safety of CAR cell therapy also de-
pend on the tumor-specificity of the chosen antigen, as the occurrence of off-target effects 
is mostly attributed to on-target off-tumor immune responses [20]. Moreover, an opti-
mized CAR structure requires a carrier that sufficiently transmits the expression message. 
Since hematopoietic cells, such as NK cells are among the cell types which are not easy to 
be transfected in vitro and in vivo, systems are required which allow not only an opti-
mized, but also safe gene transfer while keeping the costs and the burden of manufactur-
ing under GMP conditions at a minimum [21].  

In this review, we briefly discuss the unique properties of NK cells which support 
the promise of CAR NK cells in cellular immunotherapy. The review focusses on three 
major topics which are important for a successful CAR NK cell therapy: (i) production of 
well-designed CARs, (ii) selection of the correct tumor-specific/tumor-associated antigen 
as a target, and (iii) optimal engineering of NK cells by efficient CAR delivery. 

2. NK Cells—A Promising Cellular Platform for CAR Engineering 
The success of CAR cell-based immunotherapies is highly dependent on the biologi-

cal features of the effector cell population used for genetic engineering because the CAR 
aims to specifically direct and boost their cytotoxicity potential. Among different types of 
immune cells, NK cells have gained major interest in adoptive immunotherapies given 
their inherent non-major histocompatibility complex (MHC)-restricted cytotoxic potential 
against different malignancies (Figure 1) [16,17]. 

 

Figure 1. Schematic illustration of the first, second and third generations of chimeric antigen receptors (CARs), sources of natural
killer (NK) cells for genetic modifications with CARs, and CAR NK cell-based immunotherapy. Abbreviations: PB, peripheral
blood; UCB, umbilical cord blood; hESC, human embryonic stem cell; hiPSC, human induced pluripotent stem cell.
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NK cells, formerly termed “large granular lymphocytes”, play an indispensable role
in bridging and orchestrating innate and adaptive immune responses [22], producing
cytokines, and stimulating dendritic cell (DC) and B cell maturation. Phenotypically, NK
cells are characterized by lacking the expression of CD3 and the T cell receptor complex,
and several germline-encoded receptors. Based on the expression of the neuronal adhesion
molecule CD56 and the low-affinity Fc gamma receptor CD16, NK cells can be classified into
two major subsets: CD56dimCD16high cells with high cytotoxicity and CD56brightCD16low

cells with secretory activity dominantly in the peripheral blood, and tissues and secondary
lymphoid organs, respectively [23]. An efficient innate defense requires the functional
harmonization of these two major subsets for the initiation and progression of immunity
under pathogenic conditions [24].

NK cell responses against healthy and transformed cells are regulated by a fine balance
in the expression of inhibitory and activating receptors. The surface-expressed MHC class I
molecule on normal cells induces self-tolerance via the triggering of inhibitory receptors,
namely killer immunoglobulin-like receptors (KIR) and the heterodimeric C-type lectin
receptor (NKG2A) on NK cells [25]. Unlike T cells, NK cells lack an antigen-specific clonal
T cell receptor and have the capacity to kill malignant cells without prior stimulation in an
MHC-unrestricted manner. MHC mismatch, loss of MHC class I and/or overexpression
of “stress ligands” on tumor cells upregulate the expression of activating receptors and
thereby stimulate the cytolytic activity of NK cells via “missing-self” [25] and “stress-
induced foreign” signals. Following target recognition, activated NK cells initiate cell
death by activating tumor necrosis factor (TNF)-related death pathways (TRAIL, FasL), by
releasing cytolytic granules containing apoptosis-inducing granzymes and perforin [26],
or by complement- and/or antibody-dependent cell-mediated cytotoxicity (ADCC) via
binding to Fc gamma receptors without prior antigen stimulation [27,28]. An optimal NK
cell activity requires cell contact or cytokine-mediated signals from accessory immune cells
in an inflamed microenvironment. The most effective cytokines produced by NK cells are
interferon γ (IFN-γ), and granulocyte-macrophage colony-stimulating factor (GM-CSF),
which can stimulate T helper-1 (TH-1) immune responses and the release of interleukins
(IL)-2, IL-12, IL-15, IL-18, IL-21, interferon (IFN)-α, IFN-β, and IFN-γ from other immune
cells that can activate NK cell-mediated cytotoxicity [29]. Considering immune cell memory,
NK cells can re-encounter pathogens rapidly and robustly. These and other adaptive-like
properties position NK cells at the border of innate and adaptive immunity [24].

Clinical concerns relating to the initiation of GVHD most likely mediated by allogeneic
CAR T cells, and on-target off-tumor related toxicities have emerged [16,30]. CAR NK
cells exhibit several efficiency, safety, and tolerability advantages over CAR T cells. CAR
NK cell killing mechanisms can target heterogeneous malignancy by activating receptor-
mediated signaling pathways which facilitate the elimination of cells that have lost or
down-regulated expression of the antigen targeted by the CAR, thereby reducing the risk
of relapse or resistance [13]. Despite their significant therapeutic potential at the peak of
their expansion, CAR T cells can initiate severe inflammatory responses, including the
CRS and ICANS resulting from an on-target off-tumor effect. These side effects can be
life-threatening in some instances and require challenging post-treatment management [30].
In contrast, CAR NK cells produce lower amounts of pro-inflammatory cytokines such as
IL-1, IL-6, TNF-α and, therefore harbor a lower risk for developing CRS and ICANS [15].
Although it has been shown that the low binding affinity of the CAR to its tumor target
induces moderate pro-inflammatory cytokine secretion leading to mild neurological side
effects, more clinical evidence is still required [31]. Prolonged survival of CAR T cells
resulting in a long persistence in the body can exert negative side effects. Although
long-term persistence of CD19 CAR T cells is important to achieve a durable anti-tumor
immunity to prevent tumor recurrence, these cells can cause severe B cell aplasia, increased
infectious complications [31,32], and cell fratricide due to the shared antigen expression on
malignant and non-malignant T cells. An enhanced CAR T cell expansion and persistence
may therefore act like a double-edged sword [33]. Moreover, the allogeneic “off-the-shelf”
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CAR T cell products can either induce or trigger GVHD indirectly, a clinical immuno-
incompatibility syndrome which can lead to substantial morbidity and mortality, due
to HLA mismatches between donor and recipient [34]. However, allogeneic NK cells
exhibit a better safety profile which permits their use from healthy universal donors. The
shorter lifespan of NK cells may reduce autoimmunity and long-term side effects [14,16].
Moreover, the inexpensive expansion makes both autologous and allogeneic NK cells ideal
“off-the-shelf” candidates for a large-scale production of engineered CAR cells. Presently,
NK cells of multiple sources such as peripheral blood (PB), umbilical cord blood (UCB), human
embryonic stem cells (hESCs), induced pluripotent stem cells (iPSCs), and NK cell “like” lines
(i.e., NK-92), are being tested in the context of CAR engineering (Figure 1) [8]. Despite relative
low ex vivo expansion rates (2–4 fold) of mature NK cells which requires an apheresis to
obtain adequate CAR NK cell counts (ranging from 1 × 107 up to 2 × 109 total CAR NK
cells/kg body weight per infusion), feeder cell-based or feeder free expansion protocols
enable expansion capacities more than 2000-fold in the case of UCBs, iPSCs and hESCs [35].
An unlimited expansion can be achieved in case of NK cell lines such as NK-92; however,
for NK cell line-derived CAR NK cells, irradiation is required before ACT in patients.

3. Precise Design for a Functional CAR Structure

The impact of CAR on immune cell function is dependent on the design and sequence
of the utilized construct [20,36]. This offers the opportunity to rationally design CARs with
desired features. In the following, we provide an overview on the sources of NK cells, CAR
structure and the roles related to each element of the synthesized molecule in defining its
efficacy. A classical CAR consists of (i) an ectodomain (extracellular antigen-recognition
domain) linked to a hinge region, (ii) a transmembrane domain, and (iii) an endodomain
(cytoplasmic signaling segment) (Figure 1).

The antigen-binding properties of a CAR depends on a single-chain fragment variant
(scFv) which is mostly derived from a monoclonal antibody and mimics, almost entirely,
the binding characteristics of the antibody from which it originates. In other words, the
scFv plays a major role in specifically directing CAR cell affinity to a tumor cell surface
antigen [37]. A fast receptor–ligand interaction due to the low affinity of scFv can affect the
functionality of the CAR engineered cells. The CAT (a newly generated CD19 CAR) CAR
T cells with a decreased affinity and a faster off-rate than the existing CD19 CAR FMC63
show higher anti-leukemic activity in preclinical models and patients [31]. Alternatively,
an advanced scFv structure with bi-/multi-specificity has been designed to address antigen
heterogeneity and to prevent tumor escape [38]. The variable heavy (VH) and variable
light (VL) chain domains of an antibody are typically linked via a polypeptide (most
commonly (Gly4Ser)3) to construct the scFv (Figure 1) [39]. The interactions between VH
and VL shape scFv stability are influenced by the linker length and amino acid sequence.
Since the chosen linker can mitigate the concerns of instability and inflexibility, ongoing
research is mapping and designing new linker alternatives [40]. Fujiwara et al. showed
that the meticulous configurations of the scFv framework altered the CAR structural
stability, expression efficiency, and functional affinity [37]. The intrinsic instability of the
scFv framework may promote CAR tonic signaling, a chronic and antigen-independent
activation of CAR-equipped cells which leads to cell exhaustion and loss of activity [41].

The hinge region (also referred to as extracellular spacer) anchors the scFv to the
transmembrane domain. It serves not only as a connector, but also as an influencer motif
on the quality of CAR cell products [42]. The distance between the CAR scFv and target
antigen required to form an optimal immune synapse is adjusted by the length-dependent
flexibility of the hinge region [19]. For CAR NK cell engineering, the CAR spacers are often
derived from the edited immunoglobulin G [43], CD8α [44], and CD28 [45]. The hinge
domain may be a constructional factor controlling the clinical behavior of the CAR. This is
partly attributed to the indirect footprint of the hinge and transmembrane domains which
influence the level of inflammatory cytokine production and induce cell death capacity
after antigen exposure [42]. The interaction with other immune cells is also driven by the
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hinge domain; for instance, via Fc-receptors when employing parts of immunoglobulins.
Such interactions can either trigger CAR activation or lead to CAR cell depletion via the
Fc-receptor engagement [46].

The transmembrane domain connects the CAR ectodomain to the intracellular sig-
naling domain (Figure 1). The CAR containing CD8α and CD28-adapted transmembrane
domain is frequently applied in primary NK cells, whereas CD28 is preferably used for
NK cell lines. Alternative candidates such as 2B4 [47], HLA-A2 [48], CD3ζ, [49], NKP44,
CD16, and NKG2D [50] have also been included into CARs designed for NK cells. It has
been shown that hinge and transmembrane domains can alter the functionality of a CAR
by regulating the threshold and amount of CAR signaling, respectively [51,52]. Moreover,
they affect the expression levels of the CAR and thereby the antigen recognition [53].

The specific recognition and adequate stimulatory signals contribute to an ideal activa-
tion of the CAR NK cell. The CAR functionality can be regulated by intracellular signaling
domains potentiated with a co-stimulatory helper signal (e.g., CD28 and 4-1BB) [51,54,55].
With respect to this, CARs are classified in different generations (Figure 1). The first gen-
eration of CAR NK cells consists of only a CD3 zeta (ζ) signaling moiety overcoming
leukemia resistance to NK cell response [56]. One or multiple fragments have been in-
cluded as co-stimulators to take advantage of diverse signaling pathways. The number
of co-stimulators in the cytoplasmic domain determines the functionality, proliferation,
and survival of cells [57]. However, side effects related to CAR T cells urge caution when
applying this potent therapy in patients, especially for those constructs for which enhanced
potency is expected [58]. The CAR domains for NK cell engineering are modeled from CAR
structures optimized for T cells. To give an example, the 4-1BB co-stimulatory molecule
which is meant to prevent exhaustion can increase the potency and persistence of CAR T
cells to a larger extent than CD28 [59]. This difference can be attributed to various signaling
pathways targeted by co-stimulators. The 4-1BB upregulates the phosphorylation of IKK
α/β followed by stimulating nuclear factor κB (NF-κB)-induced apoptosis under the con-
trol of the tumor necrosis factor receptor-associated factor (TRAF) pathway [33]. Inserting
4-1BB into the chimeric CD19-CD3ζ receptor enhances the tumor-killing properties and
kinetics of unmodified NK cells [55]. At the same time, ongoing research is aiming to
identify a suitable (co-)stimulatory candidate which adapts to the unique characteristics
of NK cells. In this regard, activating regulators such as DAP10, DAP12, or 2B4 have
been productively employed to construct CAR endodomains [50,60]. 2B4, known as NK
cell-specific co-stimulatory domain, has been shown to extend cytotoxic capacity via cy-
tokine and contact-dependent mechanisms in vitro and in vivo [60]. A mesothelin CAR
having NKG2D transmembrane and 2B4 co-stimulatory domains maximizes CAR NK
cell anti-tumor activity, potentially because of possible downstream signaling pathways
recruiting the endogenous DAP10 [50,61]. Despite the significant performance of the
CD3ζ or DAP10 co-stimulatory domains when used alone, their combination amplifies the
activatory signaling and subsequently NK cell-mediated killing towards hematological
and solid malignancies [62]. The DAP12 adapter molecule has provided more remarkable
anti-neoplastic potential than the CD3ζ signaling adapter, efficiently empowering CAR NK
cells against prostate cancer stem cells. Consequently, based on signal activating potential,
NK cell-specific co-stimulatory domains can be arranged in the order of DAP12 > CD3ζ
> DAP10 [45]. Interestingly, a third generation of CAR NK cells containing DNAM1 and
2B4 has been shown to exhibit a much higher toxicity in hepatocellular carcinomas than
CAR NK cells generated either with no co-stimulatory domain or with T cell-specific
ones [63]. The upcoming fourth generation of armed CAR NK cells are engineered to
co-express molecules such as cytokines with co-stimulatory domains to further improve
functionality [8].

4. Established Targets for CAR NK Cells

Tumor eradication is often hampered by tumor heterogeneity modulating anti-cancer
immune responses and the tumor microenvironment. The most common tumor escape
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mechanisms include impairment of antigen presentation, increased release of immunosup-
pressive factors, deficient cell death mechanisms, and increased damage repair which must
be overcome to establish efficient therapeutic concepts [64,65].

The tumor-specific response is a fundamental principle of advanced cancer im-
munotherapy which can be positively triggered through the promotion of targeting tumor
antigens (TAs) by immune effector cells. TAs undergo genetic/proteomic mutations and
altered expression during oncogenesis, and are classified based on their expression pat-
tern, predominantly into tumor-specific antigens (TSAs) and tumor-association antigens
(TAAs) [66]. TSAs are derived from mutational processes in the cancer cells, and with a
very few unique exceptions are not found on the surface of normal cells, whereas TAAs
are expressed by cancer cells and normal cells, but are typically overexpressed in tumor
cells [66]. In the absence of truly specific surface TSAs, TAAs are commonly used for
targeted therapies, including immune cell-based approaches with CARs [64,66].

Various TAs have demonstrated promising activities in preclinical studies, and several
of these have progressed into clinical trials (Table 1). Currently, CAR NK cells overwhelm-
ingly use CAR constructs designed for T cells (Table 1). Their commonalities are their
main moieties of the CAR structure (including scFv, transmembrane membrane, and sig-
naling domain). The differences are mostly in the scFv affinity to target different tumor
antigens or in the co-stimulatory domains developing different generations [14–21]. Since
the majority of CAR NK cell studies are preclinical, insight into the efficiency and de-
pendence of efficacy on the CAR structure is limited. However, there remains a need to
optimize the structure of the CAR in terms of affinity and specificity for TA detection and
the reduction of the incidence of complications which are attributed to on-target off-tumor
effects. This latter complication is a major challenge in CAR T cell therapy mainly due
to the expression of a common antigen in malignant and non-malignant normal cells of
important organs [20]. In solid tumors, the choice of the CAR target is further complicated
by physical or chemical barriers which prevent CARs from reaching their antigen in the
tumor microenvironment [65]. In the pursuit of achieving high efficiency and restoring im-
mune activity, various modalities to unleash cell activity or reduce barriers to efficiency are
being considered. These include combination therapies with cytokine support, therapeutic
checkpoint inhibitors, chemotherapeutics, oncolytic viruses, etc. [67]. Therefore, antigen
selection is critical in CAR engineering to support therapeutic efficiency and safety. Here,
we discuss the most common TAAs applied for CAR T cells and, recently, for CAR NK cell
applications.

Table 1. Overview of the most common tumor-associated antigens (TAAs) targeted by CAR NK cells in preclinical and
clinical studies (the references refer to the most recent published study for each TAA). Abbreviations: CB, cord blood; PB,
peripheral blood; iC9, inducible caspase 9; TF, tissue factor.

Tumor Antigen Tumor Source Delivery
Method

Transmembrane
+ Endodomain State Ref

CD19 Non-Hodgkin’s lymphoma
Chronic lymphocytic leukemia CB NK Retroviral CD28, CD3ζ, iC9,

IL-15 Phase I and II trial [14]

EGFR Triple-negative breast cancer PB NK Lentiviral CD8, CD28, 4-1BB,
CD3ζ Preclinical [68]

HER2 Glioblastoma NK-92 Lentiviral CD28, CD3ζ Preclinical [69]
EpCAM Colorectal cancer NK-92 Lentiviral CD8, 4-1BB, CD3ζ Preclinical [70]

GD2 Ewing sarcoma PB NK Retroviral CD28, 4-1BB, CD3ζ Preclinical [71]
Mesothelin Ovarian carcinoma NK-92 Lentiviral CD8, CD28, 4-1BB,

CD3ζ Preclinical [72]
CD33 Acute myeloid leukemia NK-92 Lentiviral CD28, 4-1BB, CD3ζ Phase I and II trial [73]

CD123 Acute myeloid leukemia NK-92 Retroviral CD28, 4-1BB, CD3ζ Preclinical [74]
CS1 Multiple myeloma NK-92 Lentiviral CD28, CD3ζ Preclinical [75]
CD7 Acute T lymphoblastic leukemia NK-92MI Electroporation CD28, 4-1BB, CD3ζ Preclinical [76]

PSMA Prostate carcinoma NK-92 Lentiviral CD28, CD3ζ Preclinical [77]
ROBO1 Pancreatic ductal adenocarcinoma NK-92 Lentiviral CD8, 4-1BB, CD3ζ Phase I and II trial [78]
BCMA Multiple myeloma PB NK Electroporation CD8, DAP12|CD3ζ Preclinical [79]
CD20 Burkitt lymphoma PB NK Electroporation 4-1BB, CD3ζ Preclinical [80]
PSCA Prostate adenocarcinoma YT NK Lentiviral CD8, CD28, CD3ζ Preclinical [81]
GPA7 Melanoma NK-92MI Electroporation HLA-A2, CD3ζ Preclinical [48]

NKG2DL Multiple myeloma PB NK Lentiviral 4-1BB, CD3ζ Preclinical [82]
GPC3 Hepatocellular carcinoma PB NK Lentiviral CD8, 4-1BB, CD3ζ Preclinical [83]
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Table 1. Cont.

Tumor Antigen Tumor Source Delivery
Method

Transmembrane
+ Endodomain State Ref

FR α Ovarian adenocarcinoma NK-92 Lentiviral CD8, CD28, 4-1BB,
CD3ζ Preclinical [84]

CD276 Neuroblastoma NK-92 Lentiviral CD8, CD28, CD3ζ Preclinical [85]
CD135 Acute B lymphoblastic leukemia NK-92 Lentiviral CD28, CD3ζ Preclinical [86]
CD5 Acute T lymphoblastic leukemia NK-92 Lentiviral CD8, 2B4, CD3ζ Preclinical [60]

PDL1 Head and neck squamous cell
carcinoma haNK Electroporation CD8, CD28, FcεR1γ Preclinical [87]

TF Triple-negative breast cancer NK92MI Lentivirus CD28, 4-1BB, CD3ζ Preclinical [88]
CD38 Multiple myeloma KHYG-1 Retroviral CD8, CD28, 4-1BB,

CD3ζ Preclinical [89]
CEA Colorectal carcinoma NK92MI Retroviral CD8, CD3ζ Preclinical [90]

CD147 Hepatocellular carcinoma NK92MI Retroviral CD28, 4-1BB, CD3ζ Preclinical [91]
WT-1 Leukemia NK92MI Retroviral 4-1BB, CD3ζ Preclinical [92]
CD4 Acute myeloid leukemia NK-92 Lentivirus CD28, 4-1BB, CD3ζ Preclinical [93]

c-MET Hepatocellular carcinoma PB NK Lentiviral CD8, 4-1BB, DAP12 Preclinical [94]
CD138 Hematologic malignancies NK-92 Lentiviral CD8, CD28, 4-1BB,

CD3ζ Preclinical [95]
CD3 T-Cell lymphoma NK-92 Lentiviral CD28, 4-1BB, CD3ζ Preclinical [96]

4.1. CD19

Cluster of differentiation 19 (CD19) is a member of the immunoglobulin superfamily
and a biomarker for normal and cancerous B cells and follicular DCs [14]. CD19 has been
extensively studied as a promising therapeutic target for CAR-based immunotherapies due
to its high expression density in B cell-derived neoplasms, including acute lymphoblastic
leukemia (ALL), chronic lymphocytic leukemia (CLL), and non-Hodgkin’s lymphoma
(NHL) [14,97,98]. CD19 CAR T cells against various B cell malignancies have been ap-
proved by the FDA and European Medicines Agency (EMA) [99]. Despite the outstanding
efficiency of targeting CD19, experience with monospecific CD19 CAR T cells has revealed
resistance or tumor escape associated with a loss or diminished antigen density under ther-
apeutic pressure in 30–70% patients [12,30]. The potential resistance mechanisms to CD19
CAR therapies include CD19 gene mutation or downregulation, cancer cell selection by an
immune response, lineage transdifferentiation, or fratricide killing of CAR T cells as a result
of trogocytosis [100]. Interestingly, delayed CAR expression on T cells attenuating the tonic
CAR signaling can decrease the fratricide event in T cell malignancies. The transient control
of CAR expression could be obtained upon retroviral transduction by a Tet-OFF system. In
this system, the presence of doxycycline (DOX) during in vitro culture prevents transacti-
vator (rTA) binding to the synthetic promotor resulting in minimal CAR expression. By
removing DOX prior to injection into mice, T cells could acquire sufficient CAR expression
and increased survival rates [33]. Dual or multi-targeted CAR manufacturing can be a
solution for patients with tumor resistance and relapsed/refractory cancers. Several studies
have shown the feasibility and potency of simultaneous CAR targeting of CD19 along with
other alternative antigens, such as CD22 [101] and CD123 in AML [102]. It has been shown
that CD19-positive B cells infiltrate into the pancreatic ductal adenocarcinoma and may
limit the CAR T cell activity. According to these findings, mesothelin and CD19 CAR T
cells were administered to three patients in order to target tumor cells and to deplete B cells.
Although the stable disease was the best achievement of this dual therapy, both its safety
and efficiency need further improvement [103]. Trivalent CARs targeting CD19, CD20,
and CD22 on tumor cells can also be used to treat CD19-negative, relapsed tumors [104].
In a first clinical trial using a CAR NK cell-based adoptive therapy [14], the side effects
associated with CAR T cell therapies such as cytokine-release storm and neurological
symptoms have not been observed, and this experience supports further investigations of
this approach [14]. The first clinical results of CAR NK cells are encouraging and justify
further assessment of CAR NK cells across different indications [98,105,106]; however,
efficacy needs to be compared to that achieved with conventional CAR T cell concepts.
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4.2. EGFR

Epidermal growth factor receptor (EGFR; HER1; ErbB-1) belongs to a four-member
transmembrane receptor (ErbB) family with tyrosine kinase activity. An abnormal alteration
in EGFR expression and activation can transform a healthy cell into a cancerous cell, and
this is a hallmark of many types of epithelial carcinomas such as breast, lung, renal, or
head and neck cancer and glioblastoma [107]. Thus, a suitable therapeutic strategy can be
built upon a comprehensive understanding of the mechanism of action of EGFR and its
impact on tumor development. Specific receptor blockers which inhibit the EGFR-induced
signaling pathway can prevent cancer progression [108]. In addition, mutation-derived
resistance toward receptor blockers forces precision medicine to identify a more specific
targeted therapy. In the last decades, EGFR CAR cells have shed light into the potential
of CAR-based adoptive immunotherapy [68,109]. Combining EGFR CAR NK cells with
oncolytic herpes simplex virus-1 or chemotherapeutics showed synergistic effects on breast
cancer and renal cell carcinoma (RCC) in mice, respectively [110,111]. Concerning the
positive effect of IL-15 on NK cell persistence, tumor infiltration, and functionality, a
herpes simplex-1-based oncolytic virus expressing IL-15/IL-15Rα has resulted in highly
significant anti-glioblastoma effects in combination with EGFR CAR NK cells [112]. A
mutant form of EFGR (named EGFRvIII) expressed on glioblastoma cells is one of the few
potentially cancer-specific mutations that can be found on the cell surface of glioblastoma
cells and is thus amenable to CAR NK [54,113] and CAR T cell treatment. The co-culture
of glioblastoma cell lines with the EGFRvIII CAR NK cells has been shown to induce
efficient and specific apoptosis in cancer cells. For this approach, the human NK cell line
KHYG-1 was successfully transduced with lentiviral vectors and then sorted to reach an
efficiency above 80% [114]. Combination therapies including CAR cell therapies have
attracted an increased interest to overcome clinical tumor recurrence. To overcome the
impaired colony-selection and presence of residual cancer cells, dual CAR cell targeting
strategy of EGFR with other target candidates could promote the efficacy of the treatment.
Notably, dual targeting is achieved by co-expressing two specific CARs or expressing
a bispecific CAR (a shared epitope for EGFR and its mutants) on a single immune cell
platform [38,54,115]. As an alternative, the blockage of immune regulatory checkpoints
of T cells via CRISPR/Cas9-mediated gene editing could also improve the outcome of
CAR cell therapies [116]. Similarly, inhibiting immunosuppressive genes that are activated
upon IFN-γ secretion by EGFR CAR T cells can improve the efficacy of targeted therapies,
in vivo [117]. Ongoing efforts are attempting to apply EGFR CAR cells in clinical trials.

4.3. HER2

The human epidermal growth factor receptor-2 (HER2; ErbB-2) is an oncogenic tyro-
sine kinase (also termed as HER2/neu) of the ErbB family. What makes HER2 superior for
a targeted cancer therapy is the differential expression pattern in normal and neoplastic
cells. Given the vital role of HER2 in tumorigenesis, the overexpression of HER2 attributes
multiple features of malignant characteristics to certain solid tumor types such as breast
cancer and glioblastoma [118]. Hence, the HER2 expression level can be considered as a
target for cancer prognosis and diagnosis. HER2-based treatment strategies involve either
the direct targeting of HER2 or related signaling pathways [118,119]. However, an aberrant
form of HER2, known as p95, which has no extracellular domain, leads to therapeutic
resistance and highlights the urgent need for more effective therapies [120]. Although
changes in HER2 expression levels during cancer pathogenesis have raised concern for
targeted therapies, it still attracts considerable attention as a target for designing CAR T
cells, and recently also for CAR NK cells [121]. Long-term persistence in vivo and efficient
cell killing strongly favors CAR-directed cells for clinical use over approved targeted im-
munotherapies using HER2-specific antibodies (e.g., Trastuzumab) [51,122,123]. Despite
the value of well-established CAR T cell approaches, CAR NK cells have been shown to
be potent against solid tumors and show a good safety profile [124]. As an example, the
successful performance of HER2 CAR NK cells in primary and immortalized cell types
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has been validated by marked and selective anti-tumor activity against cancers like rhab-
domyosarcoma, in vitro and in vivo [51,125]. The promising effectiveness of the CAR cell
therapy associates with an optimized HER2 CAR design which in turn depends on scFv
affinity and the level of HER2 amplification in carcinomas. As another strategy, the clinical
applicability of CAR-modified cells can be potentiated by utilizing dual targeting and
inhibitory CARs which limit off-target effects [126]. Local treatment with combinatorial
adenovirus vector with simultaneous oncolytic and checkpoint inhibition ability as well as
expressing pro-inflammatory cytokines have enhanced the activity of systemically admin-
istered HER2 CAR T cells against xenograft and orthotopic head and neck squamous cell
carcinomas (HNSCC) in mice [127]. Although HER2 has been one of the most pioneering
TAAs that have been used for designing CAR constructs, more work is required in order to
achieve sustained clinical benefits with lower safety concerns.

4.4. EpCAM (CD326)

The epithelial cell adhesion molecule (EpCAM, CD326) is expressed by most epithelial
tissues, and its expression is up-regulated on certain tumor types, including adenocarcino-
mas and squamous cell carcinomas [128]. EpCAM is thought to have a critical function
in cancer and to drive malignant properties of tumor cells. For instance, the presence of
EpCAM contributes to resistance to chemo/radiotherapy in prostate cancer. In addition, it
has also been known as a circulating biomarker of metastatic tumors. Hence, this TAA has
been extensively studied in the context of cancer diagnostics, prognostics, and therapeu-
tics [129]. The selection of EpCAM as a candidate for a targeted therapy originates from
its uniform cell surface distribution on cancer cells which is different from the basolateral
localization of EpCAM in normal cells. EpCAM-targeted treatment approaches are mainly
based on monoclonal antibodies. Vaccines based on EpCAM targeting have shown a low
efficiency in the metastatic state, and to induce acquired resistance and immunogenic-
ity [130]. In contrast, the therapeutic results obtained with EpCAM CAR-directed cells in
models of solid ovarian, colon, lung, and breast tumors are promising [131,132]. EpCAM
CAR NK-92 cells combined with a tumor kinase inhibitor (e.g., Regorafenib) achieved
significant anti-tumor responses in human colorectal cancer xenografts [70]. Notably, the
expression of EpCAM in normal tissues resulted in dose-dependent severe side effects
and even death upon the infusion of EpCAM CAR T cells into BALB/c mice in a colon
tumor model [133]. Taken together, although EpCAM CAR-directed cells offer therapeutic
promise, safety considerations are of the utmost importance.

4.5. GD2

The disialoganglioside (GD2), unlike other gangliosides, is thought to be an excellent
target for immunotherapy of different solid malignancies (e.g., neuroectoderm-derived
neoplasms, most melanomas and Ewing sarcomas) due to its reduced expression in healthy
cells [134]. Although the FDA-approved GD2 antibody (Dinutuximab) exerts anti-tumoral
activity via antibody-dependent cell- and complement-dependent cytotoxicity in high-
risk neuroblastoma, the therapy is accompanied by significant treatment-related adverse
effects [135]. Due to the recurrence of neuroblastoma, the Dinutuximab monotherapy
has been tested as part of a combined modality consisting of Dinutuximab and ex vivo
activated human NK cells. The combination showed a synergistic killing activity as well
as a suppressive effect on the invasiveness potential of three different neuroblastoma cell
lines in vitro. Indeed, after resection of neuroblastoma, this strategy could improve the
overall survival in an immunodeficient mouse model by limiting the aggressiveness of
residual tumor cells [136]. These results have led to the use of GD2 CAR T cells and
CAR NK cells for treating breast cancer and neuroblastoma, respectively [137–139]. The
inhibition of immunosuppressors such as IDO1 (indoleamine-pyrrole 2,3-dioxygenase1) in
the microenvironment of neuroblastoma has the potential to limit tumor escape and to en-
hance the synergistic anti-tumor effect of GD2 CAR engineered T and NK cells. This novel
immunotherapy concept has entered phase I/II clinical trials [140]. Moreover, it has been
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shown that co-expressing IL-15 and GD2 CAR potentiated the direct anti-neuroblastoma ef-
fect of Vα24-invariant natural killer T (NKT) cells. Interestingly, given the long-term in vivo
persistence, satisfying tumor trafficking, and no significant toxic adverse effect of a GD2-
CAR-IL-15 NKT, a first-in-human clinical trial has been performed in children with relapsed
or resistant neuroblastoma following pre-treatment with Cyclophosphamide/Fludarabine
(Cy/Flu). According to the International Neuroblastoma Response criteria (INRC), the ther-
apy achieved stable disease in two patients and partial remission in one patient [139,141].
Overall, GD2 has the potential to be established as a biomarker for targeted therapy in
certain tumor types, especially neuroblastoma.

4.6. Mesothelin

Mesothelin (MSLN) is a cell surface adhesion molecule which is overexpressed in
20–90% of cancer entities such as mesothelioma, triple negative breast, ovarian, lung,
and pancreatic cancers. Low expression rates are detected in non-critical normal tissues.
Hence, MSLN might be a better choice for CAR targeted therapy of solid tumors owing
to the potentially lower risk of off-target effects [142]. Furthermore, MSLN has been
found to be expressed on AML cells but not on normal hematopoietic cells [143]. A large
number of preclinical and clinical studies have considered MSLN as a basis for targeted
therapies using antibodies, immunotoxins, vaccines, and CAR-engineered cells [144]. NK-
92 cells armed with a MSLN CAR have been reported to perform well in gastric cancer
in vitro and have shown efficacy in vivo with minor CAR-mediated toxicities [145]. Similar
positive results have been observed in MSLN-positive ovarian cancer cell lines treated
with MSLN CAR NK-92 cells. In addition, these CAR NK cells can specifically target
intraperitoneal ovarian tumors and enhance survival of tumor-bearing mice [72]. Achieving
more accurate and convincing MSLN CAR cell-mediated targeting is the primary goal of
several research groups but requires the tackling of various challenges such as production,
infiltration into solid tumors, and overcoming the immunosuppressive effects of the tumor
microenvironment [146,147]. To achieve this, some researchers use MSLN CAR NK cells
not only as specialized tumor cell killers, but also as carriers to deliver inhibitors or drugs
to the tumor microenvironment to overcome resistance and immunosuppression [148].
Like other TAAs, the dual CAR targeting system has delivered successful therapeutic
outcomes [103]. Similarly, interfering with immunosuppressive interactions such as PD-
1/PD-L1 via antibodies or drugs can promote the potency of CAR cells [149]. Although
the MSLN CAR-directed cells need to be optimized to address many issues such as safety,
MSLN is a prominent TAA for targeting therapies, particularly in solid tumors.

4.7. HSP70

The major stress-inducible Heat shock protein 70 (Hsp70) is a cytosolic protein which
resides in nearly all nucleated cells. Due to their heightened growth rates and energy de-
mand [150], most solid tumor cells as well as hematological malignancies show an up-regulated
expression of Hsp70 in the cytosol. Moreover, tumor cells, in contrast to normal cells, present
Hsp70 on their plasma membrane [151]. This tumor-specific Hsp70 membrane expression is
enabled by globotriaoslyceramide (Gb3) which is not present on the cell membrane of normal
cells [152]. Our group has developed a monoclonal antibody termed cmHsp70.1 which is able
to detect membrane bound Hsp70 on viable tumor cells [153]. Stress, including radio- and
chemotherapy, increases the cell surface density of Hsp70, and the density is also greater in
aggressive tumor cells and metastases [154]. This unique membrane form of Hsp70 might
therefore qualify as an excellent target for cell-based immunotherapies [155]. A stimulation of
NK cells with an Hsp70-derived 14-mer peptide TKD and IL-2 has been shown to increase the
cytolytic and migratory capacity of NK cells against membrane Hsp70-positive tumor cells [156].
The tolerability and efficacy of Hsp70 pre-activated NK cells in recognizing and killing of mem-
brane Hsp70-positive tumor cells has been demonstrated in preclinical settings [157], a pilot
study [6,158], a phase I clinical trial in patients with metastatic colorectal cancer or NSCLC [159],
and a phase II clinical randomized trial in patients with advanced NSCLC [5]. Considering
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the findings of these studies, it can be postulated that genetically engineered CAR T/NK cells
with a single chain cmHsp70.1 Fv fragment might provide a promising strategy to treat tumor
patients with highly aggressive and therapy-resistant tumors expressing membrane Hsp70.

5. CAR Transfer Methodology into NK Cells

The successful production of genetically engineered cells relies on highly efficient
and safe genetic delivery systems. In this respect, modern biotechnology has provided
the capability to design diverse viral or non-viral platforms for CAR delivery [160,161].
Emphasis is towards gene editing and delivery systems that achieve stable and targeted
CAR integration into the genome and yield therapeutically qualified CAR NK cells which
can be incorporated into the clinical workflow [21] (Figure 2). Here, we provide an overview
of the currently used methodologies that are applied for CAR cell engineering, with a focus
on NK cells.
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5.1. Viral Vectors for CAR Transduction

Over the years, viral vectors have offered ideal vehicles for introducing genetic mate-
rial into cells for the purpose of preclinical and clinical gene therapy [162]. A great spectrum
of viral vectors has been investigated for gene delivery into immune cells, among which
retrovirus and lentivirus-based vectors are commonly used as CAR carriers as they have
several advantages such as reliable packaging size of >8 kb, stable genome modification by
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integration into the host genome, and long-term maintenance of transgene expression in
the host [162,163].

The retroviridae family has been extensively used as an efficient gene delivery vector to
various types of mammalian cells, and most recently for CAR transduction of NK cells [163].
Only a single dose of retroviral vectors has been shown to achieve the required CAR
transduction efficiency in human pre-stimulated NK cells [164]. Clinically, 7 of 11 patients
reported complete remission of lymphoid tumors (non-Hodgkin’s lymphoma and CLL) in
response to retroviral-transduced CAR NK cell therapy, mostly in combination with other
therapies. After a one-year follow-up, the detection of CAR NK cells in the peripheral
blood of treated patients indicated long term-persistence of retrovirally CAR-modified
NK cells [14]. Amongst different generations of retroviruses, alpha-retroviral vectors have
displayed superiority over gamma-retroviral vectors, with transduction effectiveness of
90% in the NK cell line and >60% in stimulated primary NK cells [165]. However, the
unique replication ability of retroviruses allows stable transgene integration into the target
genome and long-term CAR expression, but only in dividing NK cells [164]. In addition,
retroviral vectors have a high mutagenesis rate and uncontrolled immunoreactions in
the recipient which are attributed to their random insertion into the genome resulting in
unnecessary high titers and sustaining persistence of viral vectors [166]. It is important
to bear in mind that these potential drawbacks have not shown to be disadvantageous
clinically when applying CAR T cell therapy; in fact, one of the approved CAR T cell
products employs a retroviral vector.

Lentiviruses, a subcategory of the retrovirus family, are genetically more complex than
most retroviruses due to various encoded regulatory and accessory proteins. Although
retrovirus-mediated gene delivery is common, the noteworthy clinical prosperity of lentivi-
ral CAR-transduced cells is increasing [167]. Lentiviruses have no dependency on cell
cycle progression and could be successfully transduced into both cycling and non-cycling
NK cells [168]. However, primary cultured NK cells usually require multiple rounds of
transduction by viral vectors to achieve an adequate transduction efficiency [168,169]. The
semi-random integration of lentiviral vectors still carries the risk of insertional mutagenesis
and dysregulation, but to a lesser extent than retroviral vectors and may therefore provide
a safer alternative. This difference has been attributed to differences in the degree and
integration site selection of lentiviral and retroviral vectors [166]. Since the integration
site distribution can affect the therapeutic outcome of lentiviral-transduced CAR T cells, a
targeted knock-in of transgenes can be used to improve the efficiency [170]. Moreover, the
safety concerns relating to the use of lentiviral vectors have been bypassed by advances in
their design [167].

Since the use of viral vectors faces many challenges due to their limited potential to
deliver genes into primary NK or T cells, scientific attempts to overcome the barriers are of
great importance. In this regard, there are several possible optimization approaches, such
as NK cell stimulation with feeder cells, using cytokine cocktails to accelerate the uptake of
viral vectors, or manipulating the innate antiviral response of NK cells. The fundamental
aim of these approaches is to resolve the resistance to transfection or infection using routine
methods [51,168,171]. Additionally, the cell tropism and host range of the viral vectors
can be altered by substituting native envelope proteins with heterogeneous proteins, most
commonly the G glycoprotein of vesicular stomatitis virus (VSV-G), in a procedure called
pseudotyping [172]. The VSV-G-based viral vectors provide high potential for a stable CAR
transduction in T cells, but have been less successful in primary NK cells due to an induced
genotoxicity [173,174]. It has been recently reported that upregulation of low-density
lipoprotein-receptor (LDLR) expression, which is triggered by VSV, can boost the VSV-G
lentiviral transduction into primary NK cells [175]. As an alternative, the baboon envelope
glycoprotein (BaEV-gp) along with cytokine treatment has induced a higher affinity of
lentiviral vectors to NK cells [176,177]. Similarly, pseudotyping with envelop protein of
feline endogenous retrovirus envelopes (RD114) has been shown to increase the infectivity
level of viral vectors in NK cells, with no significant changes in cell viability [106,165,178,179].
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By considering the positive correlation between the virus diffusion on target cells and
subsequent infection, cationic polymers such as hexadimethrine bromide (polybrene) or
protamine sulfate can neutralize the negative charge of some enveloped viral vectors,
thereby facilitating their membrane fusion [180]. Moreover, transduction enhancers such
as retronectin or vectofusion-1 promote the adhesion of pseudotyped viral vectors to the
host cell surface, which in turn increases cellular internalization. The greater transduction
efficiency results in a stronger anti-leukemia capacity of NK cells. Up to 90% of CD19
CAR transduction in PB-derived NK cells has been achieved using retroviral vectors
pseudotyped with RD114-TR in the presence of retronectin [106,165]. Compared to T
cells, NK cells are more resistant to viral transduction guided by their pattern recognition
receptor signals [181]. Hence, inhibiting intracellular antiviral defense mechanisms can
enhance the entry of VSV-G pseudotyped lentivirus vectors into primary NK cells and
more prominently into immortalized NK cells [171].

5.2. Non-Viral Techniques for CAR Transfection

Although viral vector-mediated gene delivery is currently the dominant strategy
for most CAR NK cell engineering systems, this approach still deserves much attention,
particularly regarding safety issues. Therefore, non-viral systems have received attention
for a number of reasons including safety, outstanding design flexibility, and simplicity of
large-scale production of therapeutic cells at a reasonable pace and low cost [182]. In the
following, we review the most popular methods applied for CAR cell engineering which
are frequently based on membrane permeabilization and carrier-based gene transfer.

5.2.1. Electroporation-Mediated Delivery

Electroporation is a non-viral technique for the loading of naked nucleic acids into
cells which involves temporary permeabilization of the cellular membrane. Notwithstand-
ing the acceptable electrotransfection efficiency of CAR-encoded DNA [183,184], several
reports have suggested risks of growth arrest and death of NK cells hindering DNA ap-
plication [185,186]. In a comparative study, DNA-electroporated NK-92 cells showed two
to three times lower cell viability than mRNA-transfected NK-92 cells after 24 h [185].
Therefore, a greater deal of attention has been dedicated to mRNA electroporation because
of the high transfection efficacy of NK cells and a better cell survival profile [185,187,188].
The electroporation of mRNA encoding a CD19 CAR in a single-step procedure medi-
ated high expression in primary unstimulated and expanded NK cells with no significant
impairment in cell viability. The transfected NK cells became strongly cytotoxic against
CD19-positive leukemic cells, to a lesser extent in primary than expanded NK cells, thereby
highlighting the positive correlation between transfection efficacy and killing ability of
NK cells [189]. In accordance with results obtained from primary NK cells, immortalized
cell lines such as NK-92 electroporated with CD19 CAR mRNA yielded a 10-fold greater
transfection efficiency than with cDNA, and this translated to higher lytic activity towards
resistant CD19-positive chronic lymphocyte leukemia cells [185]. The NK-92 cell line ex-
hibited an efficient expression of the CD20 CAR following both mRNA electroporation
and lentiviral transduction. Conversely, the CAR transfer to UCB-derived NK cells with
mRNA was not as efficient as lentiviral-mediated transduction [190]. Given the findings of
such investigations, one can state that lentiviral vectors are still promising with respect to
achieving sufficient transduction rates in primary NK cells. In this case, the advantage of
rapid mRNA translation to CAR cannot be neglected. Since mRNA works as a transcript
replacement in the cytoplasm, the transfection rate attained up to 80% efficiency within
several hours after mRNA electroporation, whereas the level of receptor expression peaked
at least one week after retroviral transduction [191].

Although there is sufficient evidence to conclude that mRNA electroporation is a
simple, fast, and cost-effective manner, the half-life of the induced transient CAR and
the progressive decline in its expression influences the therapeutic time window [191].
However, unstable CAR expression and short-term interactions with tumor target cells
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have not impaired the potential of CAR NK cells. After the electroporation of a CD19-BB-ζ
CAR into expanded NK cells, the CAR expression reached a maximum during the first
48 h. Interestingly, significant cell killing of ALL cell lines was apparent at the same time.
Furthermore, despite the 4-day persistency of the CAR NK cells, satisfying anti-leukemia
effects were also observed in vivo [191]. Nevertheless, in some cases, multiple injections
of mRNA CAR NK cells are required to affect and delay tumor growth [186,189]. Albeit
nonsurprisingly, multiple administrations of CAR NK cells may also induce undesirable
immune responses. mRNA electroporation is an adaptable and reliable way to meet the
demand of large-scale manufacturing of CAR NK cells for clinical trials and may overcome
the concern of on-target off-tumor toxicity against healthy tissues after infusion [192].

Since immune cell engineering using electroporation-based methods has significant po-
tential, substantial efforts have been made to establish an optimal electrotransfection proto-
col with minimal damage of normal cells [191,193,194]. Nucleofection is an electroporation-
based system utilizing cell-type-specific buffer solutions and optimized electric settings for
rapid and efficient DNA or mRNA delivery to a wide variety of cells such as stem cells and
primary cells that are resistant to conventional gene transfection methods. This method can
direct gene delivery into the nucleus without dependency on cell division [195–197]. The
applicability of this transfection mode has been tested in NK cells. According to the results,
nucleofection with CD20 CAR mRNA result in an enhanced anti-tumor activity against
CD20-positive hematologic malignant cells in cell culture as well as in animal models [80].
The co-transfection of a CAR sequence with other therapeutic nucleic acids provides a
promising electroporation or nucleofection approach which might be able to obtain optimal
CAR-engineered cells [198].

5.2.2. Microfluidics-Based Cell Squeezing

Cell squeezing devices based on the microfluidic technologies have been rapidly
developed for an efficient cytosolic delivery of various macro- and nanomolecules into
different cell types. The principle of this method is based on a mechanical modification
of cells that allows a transient permeabilization of cellular membrane [199]. Unlike elec-
troporation, the microfluidic cell squeezing has a minimal adverse effect on immune cell
functionality, gene transcription profile, and cytokine release, all of which are critical issues
to be considered [32]. However, the detailed impact of electroporation and microfluidic cell
squeezing on immune cell phenotype and innate functionality (e.g., NK cells) needs to be
further elucidated. This approach is expected to become valuable as a virus-free delivery
strategy in the near future.

5.2.3. Nanocarrier-Mediated Delivery

Chemically programmed vectors have been considered as a turning point in the de-
velopment of non-viral gene delivery systems [200,201]. The goal is to supply enhanced
intercellular penetration followed by sufficient endosomal escape and specific nuclear or
cytosolic localization of the cargo to bypass biological barriers [202]. The most promising
synthetic vectors include cationic polymers, lipids, or combinations of them to achieve
safety, stability, or efficiency outcomes. However, these approaches still need to be opti-
mized [203].

The advantages offered by nanotechnology open the possibility to implement nanofor-
mulations in the CAR cell technology. Among many other options, the transfection com-
petency of CARs encoding mRNA or DNA by polymeric nanoparticles showed a high
compatibility with T and NK cells [204,205]. Compared to electroporation, the use of
mRNA-carrying nanoparticles has shown a higher viability and higher expansion rates
of T cells [206,207]. Synthetic core-shell particles complexed with pDNA EGFR CAR have
been shown to efficiently transfect the NK-92MI cell line in a dose-dependent manner.
The expression of EGFR CARs potentiated the anti-oncogenic activity of NK cells in a
xenograft breast tumor model [208]. Interestingly, the potency of adoptive therapy can
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be monitored by optical imaging of CAR NK cells transfected with fluorescent-labeled
polymeric particles [208].

Ionizable lipid nanoparticle (LNP) platforms are more attractive than polymeric
nanoparticles, as they allow stable formulation, potent endogenous cellular internalization,
and low toxicity rates [209]. The ease of LNP modifications led to optimized-performing
formulations for mRNA CAR transfer to T cells [207]. A novel charge-altering releasable
transporter composed of lipophilic and polycationic blocks has been reported to signifi-
cantly facilitate the delivery of an mRNA-based CAR into resting NK cells without any need
for pre-activation. This procedure was advantageous over an electroporation method [205].

Receptor targeting plays a vital role in smart gene delivery by non-viral and viral
vectors, especially in animal models [210,211]. CD3-targeted nanoparticles encapsulating
a CD19 CAR gene flanked with a piggyBac transposon has been shown to deliver a
robust CAR production in dividing T cells in vitro and circulating T cells in vivo [212].
Insights drawn from studies have proven that precise polymers assembled in a sequence-
defined manner can also be ideal for various cargo deliveries [213]. The therapeutic
nucleotide codes transferred by nanovectors are commonly used in the forms of pDNA
and mRNA [214]. However, the stronger and less cell-cycle dependent delivery makes
minicircle DNA a better choice than plasmid DNA for complexation [215].

The flexible design and transfer capability for versatile types of cargos, either alone
or in combination, make the nanoscale delivery system a key method in biotechnology
and, most recently, in the CAR cell engineering field [212]. Nanoparticles have become
increasingly popular platforms due to their ability to carry transposon for a non-viral,
stable CAR transfection in combination with CRISPR/Cas9 for a targeted gene integration.

5.2.4. Transposon System

The application of transposon-based vectors has attracted much attention among
other non-viral transfection systems for CAR engineering, satisfying requirements for
sufficient efficiency, permanent transgene expression, together with low immunogenicity
and no genotoxic effects. Notably, the production of plasmid-based vectors is time- and
cost-effective. Due to these advantages, the transfection potential for large genes (more
than 100 kb) makes this system a valuable method for cell engineering [216–218]. It typi-
cally consists of mobile plasmids (transposons) flanked by two terminal inverted repeats
(TIRs) carrying the enzymatic gene and the inserted sequence of interest. The transposase
mediates cutting-and-pasting of the desired elements in the host genome [219]. Common
transposons such as piggyBac and sleeping beauty have led to favorable therapeutic cell
manufacturing, of which sleeping beauty-based CAR-modified cells are currently being
tested clinically because of their potential and safer integration profile [50,220–222]. Using
this approach, CAR integration by sleeping beauty-mediated transposition remarkably
increased the killing capacity of NK-92MI cells toward pancreatic cancer cells in vitro [146].
Li et al. published that the strengthened cytolysis of CAR- iPSC-derived NK cells against
resistant ovarian tumor cells raised from the efficient transduction potential of non-viral
piggyBac transposon vectors [50]. Despite the self-regulation hypothesis, transposase over
activity is a hard-to-control phenomenon which can cause cytotoxicity, transgene remo-
bilization, and undesirably malignant transformation of the therapeutic products [223].
To gain precise control of the transposon-mediated gene engineering with satisfactory
safety and efficiency, conventional DNA plasmids have been replaced by a combination of
short-lived mRNA encoding transposase and minicircle DNA cargo [146,224]. The mRNA-
encoded transposase can be applied for hyper controllability of transposition events in the
system [224]. Co-electrotransfection of minicircle DNA containing a transposon coding
for a CD19 CAR and transposase enzyme can lead to a favorable insertion profile and
generation of CAR T cells with a high therapeutic potential [225]. What may also limit
the application of the transposon is the hurdle of delivery. Although transfer with viral
vectors and electrotransfection could experience rapid development to get into clinical
trials, further attempts still need to improve transposon delivery [217,221]. For instance,
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polymeric nanomicelles have recently shown a safe and site-specific delivery of piggyBac
transposons into T cells via the endocytotic pathway. These reduction-sensitive particles
could form stable complexations with CAR transposon and transposase plasmids at an
optimized N/P ratio and resulted in an acceptable transfection outcome. However, the cell
number, plasmid concentration and the T cell cycle can alter the transfection efficiency [226].
In addition to the efficiency, the specificity, and safety of CAR gene transfection using the
transposon machinery can be optimized by considering different factors related to the
transposon system (e.g., plasmid origin and transposition activity), as well as the target
cell type. Moreover, the delivery platform and the culture condition affect the system
potency [146,222]. Nevertheless, the translation of transposon technology into medical
application must be carefully monitored. Most recently, CAR T cell lymphoma has been
observed in two of ten patients effectively treated with piggyBac modified CD19 CAR T
cells [227].

5.2.5. CRISPR-Cas9

CRISPR-Cas9 is being used as a gene editing tool to ameliorate the efficiency of
CAR cell products [228,229] Based on this technology, a programmable single guide RNA
(sgRNA) brings a Cas9 nuclease to a specific site of the genome for inducing double-
strand breaks followed by integration of the desired gene cassette via endogenous DNA
repair mechanisms, homologous recombination (HR) or non-homologous end-joining
(NHEJ). The productivity of CRISPR-Cas9 depends on the applied format of CRISPR-Cas9
components, transfection method, and cell type [230]. The CRISPR-Cas9 elements can
be introduced into cells in multiple formats such as DNA, RNA, and ribonucleoproteins
(RNPs). Accordingly, the delivery mode varies according to the CRISPR-Cas9 component
option [231].

To date, NK cells have shown resistance against transfection methods which highlights
critical concerns for gene-editing-based immunotherapy with CRISPR-Cas9. Up to now,
many strategies have been exploited in an effort to establish a safe and efficient delivery
platform [231,232]. The targeted CAR integration into the T or NK cell genome prevents
aberrant viral unspecific and semi-randomly gene integration. CD19 CAR knock-in into the
T cell receptor α constant (TRAC) locus ensures a better performance over the conventional
CAR T cells against acute lymphoblastic leukemia models, as a consequence of effective
internalization and a more uniform expression of the CAR [233]. However, the outcome
is influenced by the delivery efficacy of CRISPR-Cas9 components as well as the gene of
interest. The therapeutic qualification of CAR-engineered immune cells can be improved
via CRISPR-Cas9-mediated editing of major inhibitory genes such as PD-1. In view of the
fact that the programmed cell death ligand 1 (PD-L1) expressed on tumor cells negatively
acts on cancer treatment and can suppress the CAR T cell function [234], the blockade
of PD-1 receptor by Cas9-nucleofection accompanied by lentiviral CAR transduction
could enhance the anti-tumor activity of T cells [116]. Comparably, targeting the cytokine
checkpoint by Cas9 accelerated the therapeutic role of CAR NK cells. A fourth generation
of CAR NK cells transduced with a CD19 CAR and IL-15 has been shown to promote
in vivo persistency and subsequent efficacy against lymphoma which were potentiated
after CISH (cytokine-inducible Src homology 2 domain) gene knockout [235]. All in all, the
scientific evidence has declared the proof-of-principle for Cas9-based gene editing, which
may expand the landscape of CAR cell engineering in future approaches.

6. Conclusions

Genetically engineered CAR NK cells are a novel and very promising cell therapy
approach in oncology. Since clinical application is still in its infancy, optimization strategies
are being pursued to bring a safe and robust anti-tumoral product into clinical practice.
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