103 research outputs found

    Transfer of complex regional pain syndrome to mice via human autoantibodies is mediated by interleukin-1–induced mechanisms

    Get PDF
    Neuroimmune interactions may contribute to severe pain and regional inflammatory and autonomic signs in complex regional pain syndrome (CRPS), a posttraumatic pain disorder. Here, we investigated peripheral and central immune mechanisms in a translational passive transfer trauma mouse model of CRPS. Small plantar skin–muscle incision was performed in female C57BL/6 mice treated daily with purified serum immunoglobulin G (IgG) from patients with longstanding CRPS or healthy volunteers followed by assessment of paw edema, hyperalgesia, inflammation, and central glial activation. CRPS IgG significantly increased and prolonged swelling and induced stable hyperalgesia of the incised paw compared with IgG from healthy controls. After a short-lasting paw inflammatory response in all groups, CRPS IgG-injected mice displayed sustained, profound microglia and astrocyte activation in the dorsal horn of the spinal cord and pain-related brain regions, indicating central sensitization. Genetic deletion of interleukin-1 (IL-1) using IL-1αÎČ knockout (KO) mice and perioperative IL-1 receptor type 1 (IL-1R1) blockade with the drug anakinra, but not treatment with the glucocorticoid prednisolone, prevented these changes. Anakinra treatment also reversed the established sensitization phenotype when initiated 8 days after incision. Furthermore, with the generation of an IL-1ÎČ floxed(fl/fl) mouse line, we demonstrated that CRPS IgG-induced changes are in part mediated by microglia-derived IL-1ÎČ, suggesting that both peripheral and central inflammatory mechanisms contribute to the transferred disease phenotype. These results indicate that persistent CRPS is often contributed to by autoantibodies and highlight a potential therapeutic use for clinically licensed antagonists, such as anakinra, to prevent or treat CRPS via blocking IL-1 actions

    Enhancements on multi-exposure LASCA to reveal information of speed distribution

    Get PDF
    Laser Speckle Contrast Analysis (LASCA) has been proven to be a highly useful tool for the full-field determination of the blood perfusion of a variety of tissues. Some of the major advantages of this technique are its relatively high spatial and temporal resolution as well as its good or excellent accordance to Doppler systems. However, traditionally it is only able to report a single characteristic speed regarding to the actual range of interest. This might be misleading if multiple characteristic speeds are present (e. g. tremor and perfusion in skin) or if several kinds of tissues are mixed (e. g. parenchyma and vessels in brain). Here we present two relatively simple extensions of LASCA for these problems. The application of multiple autocorrelation functions (combined with the usage of multiple exposure times) can help in the separation of multiple characteristic speeds. We also present a useful method for the separation of information those originate from a mixture of different tissues. The latter method can be also implemented to single-exposure systems

    Genome Wide Transcriptome Analysis of Dendritic Cells Identifies Genes with Altered Expression in Psoriasis

    Get PDF
    Activation of dendritic cells by different pathogens induces the secretion of proinflammatory mediators resulting in local inflammation. Importantly, innate immunity must be properly controlled, as its continuous activation leads to the development of chronic inflammatory diseases such as psoriasis. Lipopolysaccharide (LPS) or peptidoglycan (PGN) induced tolerance, a phenomenon of transient unresponsiveness of cells to repeated or prolonged stimulation, proved valuable model for the study of chronic inflammation. Thus, the aim of this study was the identification of the transcriptional diversity of primary human immature dendritic cells (iDCs) upon PGN induced tolerance. Using SAGESeq approach, a tag-based transcriptome sequencing method, we investigated gene expression changes of primary human iDCs upon stimulation or restimulation with Staphylococcus aureus derived PGN, a widely used TLR2 ligand. Based on the expression pattern of the altered genes, we identified non-tolerizeable and tolerizeable genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (Kegg) analysis showed marked enrichment of immune-, cell cycle- and apoptosis related genes. In parallel to the marked induction of proinflammatory mediators, negative feedback regulators of innate immunity, such as TNFAIP3, TNFAIP8, Tyro3 and Mer are markedly downregulated in tolerant cells. We also demonstrate, that the expression pattern of TNFAIP3 and TNFAIP8 is altered in both lesional, and non-lesional skin of psoriatic patients. Finally, we show that pretreatment of immature dendritic cells with anti-TNF-α inhibits the expression of IL-6 and CCL1 in tolerant iDCs and partially releases the suppression of TNFAIP8. Our findings suggest that after PGN stimulation/restimulation the host cell utilizes different mechanisms in order to maintain critical balance between inflammation and tolerance. Importantly, the transcriptome sequencing of stimulated/restimulated iDCs identified numerous genes with altered expression to date not associated with role in chronic inflammation, underlying the relevance of our in vitro model for further characterization of IFNprimed iDCs

    Lack of Small Intestinal Dysbiosis Following Long-Term Selective Inhibition of Cyclooxygenase-2 by Rofecoxib in the Rat

    Get PDF
    Intestinal dysbiosis is linked to numerous gastrointestinal disorders, including inflammatory bowel diseases. It is a question of debate if coxibs, selective inhibitors of cyclooxygenase (COX)-2, cause dysbiosis. Therefore, in the present study, we aimed to determine the effect of long-term (four weeks) selective inhibition of COX-2 on the small intestinal microbiota in the rat. In order to avoid mucosal damage due to topical effects and inflammation-driven microbial alterations, rofecoxib, a nonacidic compound, was used. The direct inhibitory effect of rofecoxib on the growth of bacteria was ruled out in vitro. The mucosa-sparing effect of rofecoxib was confirmed by macroscopic and histological analysis, as well as by measuring the intestinal levels of cytokines and tight junction proteins. Deep sequencing of bacterial 16S rRNA revealed that chronic rofecoxib treatment had no significant influence on the composition and diversity of jejunal microbiota. In conclusion, this is the first demonstration that long-term selective inhibition of COX-2 by rofecoxib does not cause small intestinal dysbiosis in rats. Moreover, inhibition of COX-2 activity is not likely to be responsible per se for microbial alterations caused by some coxibs, but other drug-specific properties may contribute to it

    Substance P induces gastric mucosal protection at supraspinal level via increasing the level of endomorphin-2 in rats.

    Get PDF
    The aim of the present study was to analyze the potential role of substance P (SP) in gastric mucosal defense and to clarify the receptors and mechanisms that may be involved in it. Gastric ulceration was induced by oral administration of acidified ethanol in male Wistar rats. Mucosal levels of calcitonin gene-related peptide (CGRP) and somatostatin were determined by radioimmunoassay. For analysis of gastric motor activity the rubber balloon method was used. We found that central (intracerebroventricular) injection of SP (9.3-74pmol) dose-dependently inhibited the formation of ethanol-induced ulcers, while intravenously injected SP (0.37-7.4nmol/kg) had no effect. The mucosal protective effect of SP was inhibited by pretreatment with neurokinin 1-, neurokinin 2-, neurokinin 3- and mu-opioid receptor antagonists, while delta- and kappa-opioid receptor antagonists had no effect. Endomorphin-2 antiserum also antagonized the SP-induced mucosal protection. In the gastroprotective dose range SP failed to influence the gastric motor activity. Inhibition of muscarinic cholinergic receptors, or the synthesis of nitric oxide or prostaglandins significantly reduced the effect of SP. In addition, centrally injected SP reversed the ethanol-induced reduction of gastric mucosal CGRP content. It can be concluded, that SP may induce gastric mucosal protection initiated centrally. Its protective effect is likely to be mediated by endomorphin-2, and vagal nerve may convey the centrally initiated protection to the periphery, where both prostaglandins, nitric oxide and CGRP are involved in mediating this effect

    In Vitro Dedifferentiation of Melanocytes from Adult Epidermis

    Get PDF
    In previous work we described a novel culture technique using a cholera toxin and PMA-free medium (Mel-mix) for obtaining pure melanocyte cultures from human adult epidermis. In Mel-mix medium the cultured melanocytes are bipolar, unpigmented and highly proliferative. Further characterization of the cultured melanocytes revealed the disappearance of c-Kit and TRP-1 and induction of nestin expression, indicating that melanocytes dedifferentiated in this in vitro culture. Cholera toxin and PMA were able to induce c-Kit and TRP-1 protein expressions in the cells, reversing dedifferentiation. TRP-1 mRNA expression was induced in dedifferentiated melanocytes by UV-B irradiated keratinocyte supernatants, however direct UV-B irradiation of the cells resulted in further decrease of TRP-1 mRNA expression. These dedifferentiated, easily accessible cultured melanocytes provide a good model for studying melanocyte differentiation and possibly transdifferentiation. Because melanocytes in Mel-mix medium can be cultured with human serum as the only supplement, this culture system is also suitable for autologous cell transplantation

    Recurrent Scedosporium apiospermum mycetoma successfully treated by surgical excision and terbinafine treatment: a case report and review of the literature

    Get PDF
    Background: Scedosporium apiospermum is an emerging opportunistic filamentous fungus, which is notorious for its high levels of antifungal ‑resistance. It is able to cause localized cutaneous or subcutaneous infections in both immu‑ nocompromised and immunocompetent persons, pulmonary infections in patients with predisposing pulmonary diseases and invasive mycoses in immunocompromised patients. Subcutaneous infections caused by this fungus frequently show chronic mycetomatous manifestation. Case report: We report the case of a 70 ‑year ‑old immunocompromised man, who developed a fungal mycetoma‑ tous infection on his right leg. There was no history of trauma; the aetiological agent was identified by microscopic examination and ITS sequencing. This is the second reported case of S. apiospermum subcutaneous infections in Hungary, which was successfully treated by surgical excision and terbinafine treatment. After 7 months, the patient remained asymptomatic. Considering the antifungal susceptibility and increasing incidence of the fungus, Sce - dosporium related subcutaneous infections reported in the past quarter of century in European countries were also reviewed. Conclusions: Corticosteroid treatment represents a serious risk factor of S. apiospermum infections, especially if the patient get in touch with manure ‑enriched or polluted soil or water. Such infections have emerged several times in European countries in the past decades. The presented data suggest that besides the commonly applied voricona‑ zole, terbinafine may be an alternative for the therapy of mycetomatous Scedosporium infections
    • 

    corecore