331 research outputs found
Nanofiber devices for the targeted-delivery of therapeutically active plant and herbal ingredients
Herbal and plant based remedies have been used since times immemorial for treating illnesses or maladies of variant aetiology, whereas during the past two centuries, the pharmaceutical chemists have discovered many important modern drugs from natural botanicals and microbes. Generally, herbal and plant-derived products containing multiple compounds are administered orally for therapeutic purposes. Currently, targeted drug-delivery systems are being developed and investigated for the treatment of cardio-respiratory disorders, pain relief, wound healing, and life threatening diseases like cancers. A number of novel nanofiber membranes and devices are available for sustained release and to deliver steady supply of natural bioactive ingredients, herbal-based extracts, and a few have been approved by US-FDA and other drug regulatory agencies. The purpose of this mini review is to provide an update on the role of nanofiber devices used for the targeted-delivery of therapeutically active ingredients of plant and herbal origin as well as to underscore the potential for the delivery of cost-effective herbal ingredients and natural plant-based extracts for their biomedical applications in wound healing, inflammation-related diseases and cancer treatment. Biomed Rev 2015; 26: 37-42.Key words: targeted-delivery, natural botanicals, plant-derived ingredients, nanofibrous medical devices, biodegradable and biocompatible polymer
Design and fabrication of stent with negative Poisson's ratio
The negative Poisson's ratios can be described in terms of models based on the geometry of the system and the way this geometry changes due to applied loads. As the Poisson's ratio does not depend on scale hence deformation can take place at the nano to macro level the only requirement is the right combination of the geometry. Our thrust in this paper is to combine our knowledge of tailored enhanced mechanical properties of the materials having negative Poisson's ratio with the micromachining and electrospining technology to develop a novel stent carrying a drug delivery system. Therefore, the objective of this paper includes (i) fabrication of a micromachined metal sheet tailored with structure having negative Poisson's ratio through rotating solid squares geometry using femtosecond laser ablation; (ii) rolling fabricated structure and welding to make a tubular structure (iii) wrapping it with nanofibers of biocompatible polymer PCL(polycaprolactone) for drug delivery (iv) analysis of the functional performance and mechanical properties of fabricated structure analytically and experimentally. Further, as the applications concerned, tubular structures have potential in biomedical for example hollow tubes called stents are placed inside to provide mechanical support to a damaged artery or diseased region and to open a blocked esophagus thus allowing feeding capacity and improving quality of life
Soil Biological Activity Contributing to Phosphorus Availability in Vertisols under Long-Term Organic and Conventional Agricultural Management
Mobilization of unavailable phosphorus (P) to plant available P is a prerequisite to sustain crop productivity. Although most of the agricultural soils have sufficient amounts of phosphorus, low availability of native soil P remains a key limiting factor to increasing crop productivity. Solubilization and mineralization of applied and native P to plant available form is mediated through a number of biological and biochemical processes that are strongly influenced by soil carbon/organic matter, besides other biotic and abiotic factors. Soils rich in organic matter are expected to have higher P availability potentially due to higher biological activity. In conventional agricultural systems mineral fertilizers are used to supply P for plant growth, whereas organic systems largely rely on inputs of organic origin. The soils under organic management are supposed to be biologically more active and thus possess a higher capability to mobilize native or applied P. In this study we compared biological activity in soil of a long-term farming systems comparison field trial in vertisols under a subtropical (semi-arid) environment. Soil samples were collected from plots under 7 years of organic and conventional management at five different time points in soybean (Glycine max) -wheat (Triticum aestivum) crop sequence including the crop growth stages of reproductive significance. Upon analysis of various soil biological properties such as dehydrogenase, β-glucosidase, acid and alkaline phosphatase activities, microbial respiration, substrate induced respiration, soil microbial biomass carbon, organically managed soils were found to be biologically more active particularly at R2 stage in soybean and panicle initiation stage in wheat. We also determined the synergies between these biological parameters by using the methodology of principle component analysis. At all sampling points, P availability in organic and conventional systems was comparable. Our findings clearly indicate that owing to higher biological activity, organic systems possess equal capabilities of supplying P for crop growth as are conventional systems with inputs of mineral P fertilizers
Morally distressing experiences, moral injury, and burnout in florida healthcare providers during the covid-19 pandemic
Because healthcare providers may be experiencing moral injury (MI), we inquired about their healthcare morally distressing experiences (HMDEs), MI perpetrated by self (Self MI) or others (Others MI), and burnout during the COVID-19 pandemic. Participants were 265 healthcare providers in North Central Florida (81.9% female, Mage = 37.62) recruited via flyers and emailed brochures that completed online surveys monthly for four months. Logistic regression analyses investigated whether MI was associated with specific HMDEs, risk factors (demographic characteristics, prior mental/medical health adversity, COVID-19 protection concern, health worry, and work impact), protective factors (personal resilience and leadership support), and psychiatric symptomatology (depression, anxiety, and PTSD). Linear regression analyses explored how Self/Others MI, psychiatric symptomatology, and the risk/protective factors related to burnout. We found consistently high rates of MI and burnout, and that both Self and Others MI were associated with specific HMDEs, COVID-19 work impact, COVID-19 protection concern, and leadership support. Others MI was also related to prior adversity, nurse role, COVID-19 health worry, and COVID-19 diagnosis. Predictors of burnout included Self MI, depression symptoms, COVID-19 work impact, and leadership support. Hospital administrators/supervisors should recognize the importance of supporting the HCPs they supervise, particularly those at greatest risk of MI and burnout
Influence of Different Plant Species on Methane Emissions from Soil in a Restored Swiss Wetland
Plants are a major factor influencing methane emissions from wetlands, along with environmental parameters such as water table, temperature, pH, nutrients and soil carbon substrate. We conducted a field experiment to study how different plant species influence methane emissions from a wetland in Switzerland. The top 0.5 m of soil at this site had been removed five years earlier, leaving a substrate with very low methanogenic activity. We found a sixfold difference among plant species in their effect on methane emission rates: Molinia caerulea and Lysimachia vulgaris caused low emission rates, whereas Senecio paludosus, Carex flava, Juncus effusus and Typha latifolia caused relatively high rates. Centaurea jacea, Iris sibirica, and Carex davalliana caused intermediate rates. However, we found no effect of either plant biomass or plant functional groups – based on life form or productivity of the habitat – upon methane emission. Emissions were much lower than those usually reported in temperate wetlands, which we attribute to reduced concentrations of labile carbon following topsoil removal.
Thus, unlike most wetland sites, methane production in this site was probably fuelled chiefly by root exudation from living plants and from root decay. We conclude that in most wetlands, where concentrations of labile carbon are much higher, these sources account for only a small proportion of the methane emitted. Our study confirms that plant species composition does influence methane emission from wetlands, and should be considered when developing measures to mitigate the greenhouse gas emissions
The Cyprinodon variegatus genome reveals gene expression changes underlying differences in skull morphology among closely related species
Genes in durophage intersection set at 15 dpf. This is a comma separated table of the genes in the 15 dpf durophage intersection set. Given are edgeR results for each pairwise comparison. Columns indicating whether a gene is included in the intersection set at a threshold of 1.5 or 2 fold are provided. (CSV 13Â kb
A Cytological Analysis of Wheat Meiosis Targeted by Virus-Induced Gene Silencing (VIGS)
Virus-induced gene silencing (VIGS) is a rapid and cost-effective reverse genetic technology that can be used to assess gene function in wheat. This chapter contains a detailed description of how to target wheat meiotic genes by VIGS. The timing of this technique is critical and has been optimized to silence meiotic genes at peak expression, evidenced by silencing of Triticum aestivum disrupted meiotic cDNA1 (TaDMC1). We also describe cytological techniques that have been adapted for the preparation and analysis of meiocytes in wheat, including fluorescent in situ hybridization (FISH) with directly labeled, synthetic oligonucleotide probes, and immunolocalization on spread material
Polymorphic residues in rice NLRs expand binding and response to effectors of the blast pathogen
Accelerated adaptive evolution is a hallmark of plant-pathogen interactions. Plant intracellular immune receptors (NLRs) often occur as allelic series with differential pathogen specificities. The determinants of this specificity remain largely unknown. Here, we unravelled the biophysical and structural basis of expanded specificity in the allelic rice NLR Pik, which responds to the effector AVR-Pik from the rice blast pathogen Magnaporthe oryzae. Rice plants expressing the Pikm allele resist infection by blast strains expressing any of three AVR-Pik effector variants, whereas those expressing Pikp only respond to one. Unlike Pikp, the integrated heavy metal-associated (HMA) domain of Pikm binds with high affinity to each of the three recognized effector variants, and variation at binding interfaces between effectors and Pikp-HMA or Pikm-HMA domains encodes specificity. By understanding how co-evolution has shaped the response profile of an allelic NLR, we highlight how natural selection drove the emergence of new receptor specificities. This work has implications for the engineering of NLRs with improved utility in agriculture
- …