269 research outputs found
Phone-based interventions in adolescent psychiatry: A perspective and proof of concept pilot study with a focus on depression and autism
Identification of a protein encoded in the EB-viral open reading frame BMRF2
Using monospecific rabbit sera against a peptide derived from a potential antigenic region of the Epstein-Barr viral amino acid sequence encoded in the open reading frame BMRF2 we could identify a protein-complex of 53/55 kDa in chemically induced B95-8, P3HR1 and Raji cell lines. This protein could be shown to be membrane-associated, as predicted by previous computer analysis of the secondary structure and hydrophilicity pattern, and may be a member of EBV-induced membrane proteins in lytically infected cells
Cellulose acetate phthalate, a common pharmaceutical excipient, inactivates HIV-1 and blocks the coreceptor binding site on the virus envelope glycoprotein gp120
BACKGROUND: Cellulose acetate phthalate (CAP), a pharmaceutical excipient used for enteric film coating of capsules and tablets, was shown to inhibit infection by the human immunodeficiency virus type 1 (HIV-1) and several herpesviruses. CAP formulations inactivated HIV-1, herpesvirus types 1 (HSV-1) and 2 (HSV-2) and the major nonviral sexually transmitted disease (STD) pathogens and were effective in animal models for vaginal infection by HSV-2 and simian immunodeficiency virus. METHODS: Enzyme-linked immunoassays and flow cytometry were used to demonstrate CAP binding to HIV-1 and to define the binding site on the virus envelope. RESULTS: 1) CAP binds to HIV-1 virus particles and to the envelope glycoprotein gp120; 2) this leads to blockade of the gp120 V3 loop and other gp120 sites resulting in diminished reactivity with HIV-1 coreceptors CXCR4 and CCR5; 3) CAP binding to HIV-1 virions impairs their infectivity; 4) these findings apply to both HIV-1 IIIB, an X4 virus, and HIV-1 BaL, an R5 virus. CONCLUSIONS: These results provide support for consideration of CAP as a topical microbicide of choice for prevention of STDs, including HIV-1 infection
The RCK1 domain of the human BK_(Ca) channel transduces Ca^(2+) binding into structural rearrangements
Large-conductance voltage- and Ca^(2+)-activated K^+ (BK_(Ca)) channels play a fundamental role in cellular function by integrating information from their voltage and Ca2+ sensors to control membrane potential and Ca^(2+) homeostasis. The molecular mechanism of Ca^(2+)-dependent regulation of BKCa channels is unknown, but likely relies on the operation of two cytosolic domains, regulator of K^+ conductance (RCK)1 and RCK2. Using solution-based investigations, we demonstrate that the purified BK_(Ca) RCK1 domain adopts an α/β fold, binds Ca^(2+), and assembles into an octameric superstructure similar to prokaryotic RCK domains. Results from steady-state and time-resolved spectroscopy reveal Ca^(2+)-induced conformational changes in physiologically relevant [Ca^(2+)]. The neutralization of residues known to be involved in high-affinity Ca^(2+) sensing (D362 and D367) prevented Ca^(2+)-induced structural transitions in RCK1 but did not abolish Ca^(2+) binding. We provide evidence that the RCK1 domain is a high-affinity Ca^(2+) sensor that transduces Ca^(2+) binding into structural rearrangements, likely representing elementary steps in the Ca^(2+)-dependent activation of human BK_(Ca) channels
Fractional Stars
This study examines the possibility of starting the process of collapsing and forming stars from a fractional molecular cloud. Although the Verlinde\u27s approach is employed to derive the corresponding gravitational potential, the results are easily generalizable to other gravitational potential proposals for fractional systems. It is due to the fact that the different methods, despite the difference in the details of results, all obtain power forms for the potential in terms of radius. An essential result of this analysis is the derivation of the corresponding Jeans mass limit, which is a crucial parameter in understanding the formation of stars. The study shows that the Jeans mass of a cloud in fractional gravity is much smaller than the traditional value. In addition, the study also determines the burning temperature of the resulting star using the Gamow theory. This calculation provides insight into the complex processes that govern the evolution of these celestial bodies. Finally, the study briefly discusses the investigation of hydrostatic equilibrium, a crucial condition that ensures the stability of these fractional stars. It also addresses the corresponding Lane--Emden equation, which is pivotal in understanding this equilibrium.29 pages, 3 figures, to appear in Astrophysics and Space Scienc
Metal-driven Operation of the Human Large-conductance Voltage- and Ca^(2+)-dependent Potassium Channel (BK) Gating Ring Apparatus
Large-conductance voltage- and Ca^(2+)-dependent K^+ (BK, also known as MaxiK) channels are homo-tetrameric proteins with a broad expression pattern that potently regulate cellular excitability and Ca^(2+) homeostasis. Their activation results from the complex synergy between the transmembrane voltage sensors and a large (>300 kDa) C-terminal, cytoplasmic complex (the “gating ring”), which confers sensitivity to intracellular Ca^(2+) and other ligands. However, the molecular and biophysical operation of the gating ring remains unclear. We have used spectroscopic and particle-scale optical approaches to probe the metal-sensing properties of the human BK gating ring under physiologically relevant conditions. This functional molecular sensor undergoes Ca^(2+)- and Mg^(2+)-dependent conformational changes at physiologically relevant concentrations, detected by time-resolved and steady-state fluorescence spectroscopy. The lack of detectable Ba^(2+)-evoked structural changes defined the metal selectivity of the gating ring. Neutralization of a high-affinity Ca^(2+)-binding site (the “calcium bowl”) reduced the Ca^(2+) and abolished the Mg^(2+) dependence of structural rearrangements. In congruence with electrophysiological investigations, these findings provide biochemical evidence that the gating ring possesses an additional high-affinity Ca^(2+)-binding site and that Mg^(2+) can bind to the calcium bowl with less affinity than Ca^(2+). Dynamic light scattering analysis revealed a reversible Ca^(2+)-dependent decrease of the hydrodynamic radius of the gating ring, consistent with a more compact overall shape. These structural changes, resolved under physiologically relevant conditions, likely represent the molecular transitions that initiate the ligand-induced activation of the human BK channel
Are Attitudes Toward Evidence-Based Practice Different Between the United States and Chinese Occupational Therapy and Physical Therapy Students?
Purpose: Evidence-based practice (EBP) integrates the best evidence from research, clinician expertise, and patient preferences and values to deliver the highest quality of care to improve patient outcomes. Occupational therapy (OT), physical therapy (PT), and rehabilitation students gain exposure to EBP through both didactic and experiential learning. The differences in cultural, educational systems, and student learning styles between the United States and China may lead to different students’ perceptions and attitudes towards EBP. The purpose of the study was to characterize and compare the perceptions of and attitudes towards EBP between the U.S. and Chinese OT and PT students. Methods: A cross-sectional survey of the Evidence-Based Practice Process Assessment Scale (EBPPAS) was sent to professional students enrolled in Doctor of Occupational Therapy (OTD), Doctor of Physical Therapy (DPT), and Master of Occupational Therapy (MOT) programs at three universities in the U.S. (n=1,062) and OT, PT, and rehabilitation students of four-year bachelor programs at four universities in China (n=1,017). Students’ perception of the overall and individual domain of EBP was compared between the U.S. and China with independent samples t-test. Results: In general, all students showed a positive attitude towards EBP across the five domains. The U.S. DPT students had the highest mean score of 3.90 in the domain of “attitude about EBP” followed by the U.S. MOT students (mean=3.88), and the U.S. OTD students (mean=3.84). On average, the U.S. students scored 0.44 (13.8%) higher than Chinese students in all domains combined. Responses from both countries showed the highest scores in the domain of “attitude about EBP” followed by “familiarity with EBP” and “intention to engage in EBP”. In addition, the overall mean score increased non-significantly by 0.07 for the U.S. students from 1st year to 3rd year while it increased significantly by 0.15 (pnd year to 4th year. Conclusion: Few research studies have compared professional students’ attitudes towards EBP between the U.S. and China. This study demonstrated that the U.S. students were more positive overall and in all five domains. Future studies may focus on novice ways to promote EBP in didactic teaching and in clinical practice
Fully three-dimensional sound speed-corrected multi-wavelength photoacoustic breast tomography
Photoacoustic tomography is a contrast agent-free imaging technique capable
of visualizing blood vessels and tumor-associated vascularization in breast
tissue. While sophisticated breast imaging systems have been recently
developed, there is yet much to be gained in imaging depth, image quality and
tissue characterization capability before clinical translation is possible. In
response, we have developed a hybrid photoacoustic and ultrasound-transmission
tomographic system PAM3. The photoacoustic component has for the first time
three-dimensional multi-wavelength imaging capability, and implements
substantial technical advancements in critical hardware and software
sub-systems. The ultrasound component enables for the first time, a
three-dimensional sound speed map of the breast to be incorporated in
photoacoustic reconstruction to correct for inhomogeneities, enabling accurate
target recovery. The results demonstrate the deepest photoacoustic breast
imaging to date namely 48 mm, with a more uniform field of view than hitherto,
and an isotropic spatial resolution that rivals that of Magnetic Resonance
Imaging. The in vivo performance achieved, and the diagnostic value of
interrogating angiogenesis-driven optical contrast as well as tumor mass sound
speed contrast, gives confidence in the system's clinical potential.Comment: 33 pages Main Body, 9 pages Supplementary Materia
Fully three-dimensional sound speed-corrected multi-wavelength photoacoustic breast tomography
Photoacoustic tomography is a contrast agent-free imaging technique capable of visualizing blood vessels and tumor-associated vascularization in breast tissue. While sophisticated breast imaging systems have been recently developed, there is yet much to be gained in imaging depth, image quality and tissue characterization capability before clinical translation is possible. In response, we have developed a hybrid photoacoustic and ultrasound-transmission tomographic system PAM3. The photoacoustic component has for the first time three-dimensional multi-wavelength imaging capability, and implements substantial technical advancements in critical hardware and software sub-systems. The ultrasound component enables for the first time, a three-dimensional sound speed map of the breast to be incorporated in photoacoustic reconstruction to correct for inhomogeneities, enabling accurate target recovery. The results demonstrate the deepest photoacoustic breast imaging to date namely 48 mm, with a more uniform field of view than hitherto, and an isotropic spatial resolution that rivals that of Magnetic Resonance Imaging. The in vivo performance achieved, and the diagnostic value of interrogating angiogenesis-driven optical contrast as well as tumor mass sound speed contrast, gives confidence in the system's clinical potential
HIV-1 Envelope Subregion Length Variation during Disease Progression
The V3 loop of the HIV-1 Env protein is the primary determinant of viral coreceptor usage, whereas the V1V2 loop region is thought to influence coreceptor binding and participate in shielding of neutralization-sensitive regions of the Env glycoprotein gp120 from antibody responses. The functional properties and antigenicity of V1V2 are influenced by changes in amino acid sequence, sequence length and patterns of N-linked glycosylation. However, how these polymorphisms relate to HIV pathogenesis is not fully understood. We examined 5185 HIV-1 gp120 nucleotide sequence fragments and clinical data from 154 individuals (152 were infected with HIV-1 Subtype B). Sequences were aligned, translated, manually edited and separated into V1V2, C2, V3, C3, V4, C4 and V5 subregions. V1-V5 and subregion lengths were calculated, and potential N-linked glycosylation sites (PNLGS) counted. Loop lengths and PNLGS were examined as a function of time since infection, CD4 count, viral load, and calendar year in cross-sectional and longitudinal analyses. V1V2 length and PNLGS increased significantly through chronic infection before declining in late-stage infection. In cross-sectional analyses, V1V2 length also increased by calendar year between 1984 and 2004 in subjects with early and mid-stage illness. Our observations suggest that there is little selection for loop length at the time of transmission; following infection, HIV-1 adapts to host immune responses through increased V1V2 length and/or addition of carbohydrate moieties at N-linked glycosylation sites. V1V2 shortening during early and late-stage infection may reflect ineffective host immunity. Transmission from donors with chronic illness may have caused the modest increase in V1V2 length observed during the course of the pandemic
- …
