154 research outputs found

    Impact of warm ENSO events on atmospheric circulation and convection over the tropical Atlantic and West Africa

    Get PDF

    High-power operation of coherently coupled tapered laser diodes in an external cavity

    Get PDF
    We demonstrate a rear-side phase-locking architecture with two high-brightness diode lasers. This technique is based on the passive phase-locking of emitters in an external cavity on their rear facet, and their coherent combination on the front facet. Two high-brightness high-power tapered laser diodes are coherently combined using a Michelson-based cavity. The combining efficiency is above 80% and results in an output power of 6.7 W in a nearly diffraction-limited beam. The rear-side architecture is then used with a laser bar of 5 tapered emitters using an interferometric extended cavity, based on a diffractive optical element. We describe the experimental evaluation of the diffractive optical element, and the phase-locked operation of the laser bar

    Separate phase-locking and coherent combining of two laser diodes in a Michelson cavity

    Get PDF
    We describe a new coherent beam combining architecture based on passive phase-locking of two laser diodes in a Michelson external cavity on their rear facet, and their coherent combination on the front facet. As a proof-of-principle, two ridge lasers have been coherently combined with >90 % efficiency. The phase-locking range, and the resistance of the external cavity to perturbations have been thoroughly investigated. The combined power has been stabilized over more than 15 min with an optical feedback as well as with an automatic adjustment of the driving currents. Furthermore, two high-brightness high-power tapered laser diodes have been coherently combined in a similar arrangement; the combining efficiency is 70% and results in an output power of 4 W. We believe that this new configuration combines the simplicity of passive self-organizing architectures with the optical efficiency of master-oscillator power-amplifier ones

    Coherent combining of two high-brightness laser diodes phase-locked by a Michelson-type external cavity (Orale)

    Get PDF
    International audienceWe describe a new coherent beam combin- ing architecture based on the passive phase- locking of two laser diodes in a Michelson external cavity on their rear side, and their coherent combination on their front side

    The 1983 drought in the West Sahel: a case study

    Get PDF
    Some drought years over sub-Saharan west Africa (1972, 1977, 1984) have been previously related to a cross-equatorial Atlantic gradient pattern with anomalously warm sea surface temperatures (SSTs) south of 10°N and anomalously cold SSTs north of 10°N. This SST dipole-like pattern was not characteristic of 1983, the third driest summer of the twentieth century in the Sahel. This study presents evidence that the dry conditions that persisted over the west Sahel in 1983 were mainly forced by high Indian Ocean SSTs that were probably remanent from the strong 1982/1983 El Niño event. The synchronous Pacific impact of the 1982/1983 El Niño event on west African rainfall was however, quite weak. Prior studies have mainly suggested that the Indian Ocean SSTs impact the decadal-scale rainfall variability over the west Sahel. This study demonstrates that the Indian Ocean also significantly affects inter-annual rainfall variability over the west Sahel and that it was the main forcing for the drought over the west Sahel in 1983

    Frequency of extreme Sahelian storms tripled since 1982 in satellite observations

    Get PDF
    The hydrological cycle is expected to intensify under global warming, with studies reporting more frequent extreme rain events in many regions of the world, and predicting increases in future flood frequency. Such early, predominantly mid-latitude observations are essential because of shortcomings within climate models in their depiction of convective rainfall. A globally important group of intense storms—mesoscale convective systems (MCSs)—poses a particular challenge, because they organize dynamically on spatial scales that cannot be resolved by conventional climate models. Here, we use 35 years of satellite observations from the West African Sahel to reveal a persistent increase in the frequency of the most intense MCSs. Sahelian storms are some of the most powerful on the planet, and rain gauges in this region have recorded a rise in ‘extreme’ daily rainfall totals. We find that intense MCS frequency is only weakly related to the multidecadal recovery of Sahel annual rainfall, but is highly correlated with global land temperatures. Analysis of trends across Africa reveals that MCS intensification is limited to a narrow band south of the Sahara desert. During this period, wet-season Sahelian temperatures have not risen, ruling out the possibility that rainfall has intensified in response to locally warmer conditions. On the other hand, the meridional temperature gradient spanning the Sahel has increased in recent decades, consistent with anthropogenic forcing driving enhanced Saharan warming. We argue that Saharan warming intensifies convection within Sahelian MCSs through increased wind shear and changes to the Saharan air layer. The meridional gradient is projected to strengthen throughout the twenty-first century, suggesting that the Sahel will experience particularly marked increases in extreme rain. The remarkably rapid intensification of Sahelian MCSs since the 1980s sheds new light on the response of organized tropical convection to global warming, and challenges conventional projections made by general circulation models

    Regional-scale climate-variability synchrony of cholera epidemics in West Africa

    Get PDF
    BACKGROUND: The relationship between cholera and climate was explored in Africa, the continent with the most reported cases, by analyzing monthly 20-year cholera time series for five coastal adjoining West African countries: Côte d'Ivoire, Ghana, Togo, Benin and Nigeria. METHODS: We used wavelet analyses and derived methods because these are useful mathematical tools to provide information on the evolution of the periodic component over time and allow quantification of non-stationary associations between time series. RESULTS: The temporal variability of cholera incidence exhibits an interannual component, and a significant synchrony in cholera epidemics is highlighted at the end of the 1980's. This observed synchrony across countries, even if transient through time, is also coherent with both the local variability of rainfall and the global climate variability quantified by the Indian Oscillation Index. CONCLUSION: Results of this study suggest that large and regional scale climate variability influence both the temporal dynamics and the spatial synchrony of cholera epidemics in human populations in the Gulf of Guinea, as has been described for two other tropical regions of the world, western South America and Bangladesh
    corecore