3,479 research outputs found
A review of fundamental equations of the mixture of a gas with small solid particles
Fluid dynamics of gas-particle flow and solid particle behavior in mixed flo
Similarity laws of lunar and terrestrial volcanic flows
A mathematical model of a one dimensional, steady duct flow of a mixture of a gas and small solid particles (rock) was analyzed and applied to the lunar and the terrestrial volcanic flows under geometrically and dynamically similar conditions. Numerical results for the equilibrium two phase flows of lunar and terrestrial volcanoes under similar conditions are presented. The study indicates that: (1) the lunar crater is much larger than the corresponding terrestrial crater; (2) the exit velocity from the lunar volcanic flow may be higher than the lunar escape velocity but the exit velocity of terrestrial volcanic flow is much less than that of the lunar case; and (3) the thermal effects on the lunar volcanic flow are much larger than those of the terrestrial case
Combustion at reduced gravitational conditions
The theoretical structures needed for the predictive analyses and interpretations for flame propagation and extinction for clouds of porous particulates are presented. Related combustion theories of significance to reduced gravitational studies of combustible media are presented. Nonadiabatic boundaries are required for both autoignition theory and for extinction theory. Processes that were considered include, pyrolysis and vaporization of particulates, heterogeneous and homogeneous chemical kinetics, molecular transport of heat and mass, radiative coupling of the medium to its environment, and radiative coupling among particles and volume elements of the combustible medium
Zero Temperature Insulator-Metal Transition in Doped Manganites
We study the transition at T=0 from a ferromagnetic insulating to a
ferromagnetic metallic phase in manganites as a function of hole doping using
an effective low-energy model Hamiltonian proposed by us recently. The model
incorporates the quantum nature of the dynamic Jahn-Teller(JT) phonons strongly
coupled to orbitally degenerate electrons as well as strong Coulomb correlation
effects and leads naturally to the coexistence of localized (JT polaronic) and
band-like electronic states. We study the insulator-metal transition as a
function of doping as well as of the correlation strength U and JT gain in
energy E_{JT}, and find, for realistic values of parameters, a ground state
phase diagram in agreement with experiments. We also discuss how several other
features of manganites as well as differences in behaviour among manganites can
be understood in terms of our model.Comment: To be published in Europhysics Letter
Privacy and Truthful Equilibrium Selection for Aggregative Games
We study a very general class of games --- multi-dimensional aggregative
games --- which in particular generalize both anonymous games and weighted
congestion games. For any such game that is also large, we solve the
equilibrium selection problem in a strong sense. In particular, we give an
efficient weak mediator: a mechanism which has only the power to listen to
reported types and provide non-binding suggested actions, such that (a) it is
an asymptotic Nash equilibrium for every player to truthfully report their type
to the mediator, and then follow its suggested action; and (b) that when
players do so, they end up coordinating on a particular asymptotic pure
strategy Nash equilibrium of the induced complete information game. In fact,
truthful reporting is an ex-post Nash equilibrium of the mediated game, so our
solution applies even in settings of incomplete information, and even when
player types are arbitrary or worst-case (i.e. not drawn from a common prior).
We achieve this by giving an efficient differentially private algorithm for
computing a Nash equilibrium in such games. The rates of convergence to
equilibrium in all of our results are inverse polynomial in the number of
players . We also apply our main results to a multi-dimensional market game.
Our results can be viewed as giving, for a rich class of games, a more robust
version of the Revelation Principle, in that we work with weaker informational
assumptions (no common prior), yet provide a stronger solution concept (ex-post
Nash versus Bayes Nash equilibrium). In comparison to previous work, our main
conceptual contribution is showing that weak mediators are a game theoretic
object that exist in a wide variety of games -- previously, they were only
known to exist in traffic routing games
Theory of Insulator Metal Transition and Colossal Magnetoresistance in Doped Manganites
The persistent proximity of insulating and metallic phases, a puzzling
characterestic of manganites, is argued to arise from the self organization of
the twofold degenerate e_g orbitals of Mn into localized Jahn-Teller(JT)
polaronic levels and broad band states due to the large electron - JT phonon
coupling present in them. We describe a new two band model with strong
correlations and a dynamical mean-field theory calculation of equilibrium and
transport properties. These explain the insulator metal transition and colossal
magnetoresistance quantitatively, as well as other consequences of two state
coexistence
Best chirplet chain: near-optimal detection of gravitational wave chirps
The list of putative sources of gravitational waves possibly detected by the
ongoing worldwide network of large scale interferometers has been continuously
growing in the last years. For some of them, the detection is made difficult by
the lack of a complete information about the expected signal. We concentrate on
the case where the expected GW is a quasi-periodic frequency modulated signal
i.e., a chirp. In this article, we address the question of detecting an a
priori unknown GW chirp. We introduce a general chirp model and claim that it
includes all physically realistic GW chirps. We produce a finite grid of
template waveforms which samples the resulting set of possible chirps. If we
follow the classical approach (used for the detection of inspiralling binary
chirps, for instance), we would build a bank of quadrature matched filters
comparing the data to each of the templates of this grid. The detection would
then be achieved by thresholding the output, the maximum giving the individual
which best fits the data. In the present case, this exhaustive search is not
tractable because of the very large number of templates in the grid. We show
that the exhaustive search can be reformulated (using approximations) as a
pattern search in the time-frequency plane. This motivates an approximate but
feasible alternative solution which is clearly linked to the optimal one.
[abridged version of the abstract]Comment: 23 pages, 9 figures. Accepted for publication in Phys. Rev D Some
typos corrected and changes made according to referee's comment
Best network chirplet-chain: Near-optimal coherent detection of unmodeled gravitation wave chirps with a network of detectors
The searches of impulsive gravitational waves (GW) in the data of the
ground-based interferometers focus essentially on two types of waveforms: short
unmodeled bursts and chirps from inspiralling compact binaries. There is room
for other types of searches based on different models. Our objective is to fill
this gap. More specifically, we are interested in GW chirps with an arbitrary
phase/frequency vs. time evolution. These unmodeled GW chirps may be considered
as the generic signature of orbiting/spinning sources. We expect quasi-periodic
nature of the waveform to be preserved independent of the physics which governs
the source motion. Several methods have been introduced to address the
detection of unmodeled chirps using the data of a single detector. Those
include the best chirplet chain (BCC) algorithm introduced by the authors. In
the next years, several detectors will be in operation. The joint coherent
analysis of GW by multiple detectors can improve the sight horizon, the
estimation of the source location and the wave polarization angles. Here, we
extend the BCC search to the multiple detector case. The method amounts to
searching for salient paths in the combined time-frequency representation of
two synthetic streams. The latter are time-series which combine the data from
each detector linearly in such a way that all the GW signatures received are
added constructively. We give a proof of principle for the full sky blind
search in a simplified situation which shows that the joint estimation of the
source sky location and chirp frequency is possible.Comment: 22 pages, revtex4, 6 figure
A brackishwater isolate of Pseudomonas PS-102, a potential antagonistic bacterium against pathogenic vibrios in penaeid and non-penaeid rearing systems
A Pseudomonas sp PS-102 recovered from Muttukkadu brackish water lagoon, situated south of Chennai, showed significant activity against a number of shrimp pathogenic vibrios. Out of the 112 isolates of bacterial pathogens comprising Vibrio harveyi, V. vulnificus, V. parahaemolyticus, V. alginolyticus, V. fluvialis, and Aeromonas spp, 73% were inhibited in vitro by the cell-free culture supernatant of Pseudomonas sp PS-102 isolate. The organism produced yellowish fluorescent pigment on King's B medium, hydrolysed starch and protein, and produced 36.4% siderophore units by CAS assay and 32 μM of catechol siderophores as estimated by Arnow's assay. The PS-102 isolate showed wide ranging environmental tolerance with, temperatures from 25 to 40 °C, pH from 6 to 8, salinity from 0 to 36 ppt, while the antagonistic activity peaked in cultures grown at 30 °C, pH 8.0 and at 5 ppt saline conditions. The antagonistic activity of the culture supernatant was evident even at 30% v / v dilution against V. harveyi. The preliminary studies on the nature of the antibacterial action indicated that the antagonistic principle as heat stable and resistant to proteolytic, lipolytic and amylolytic enzymes. Pseudomonas sp PS 102 was found to be safe to shrimp when PL-9 stage were challenged at 107 CFU ml− 1 and by intramuscular injection into of 5 g sub-adults shrimp at 105 to 108 CFU. Further, its safety in a mammalian system, tested by its pathogenicity to mice, was also determined and its LD50 to BALB/c mice was found to be 109 CFU. The results of this study indicated that the organism Pseudomonas sp PS 102 could be employed as a potential probiont in shrimp and prawn aquaculture systems for management and control of bacterial infections
Singular value decomposition in parametrised tests of post-Newtonian theory
Various coefficients of the 3.5 post-Newtonian (PN) phasing formula of
non-spinning compact binaries moving in circular orbits is fully characterized
by the two component masses. If two of these coefficients are independently
measured, the masses can be estimated. Future gravitational wave observations
could measure many of the 8 independent PN coefficients calculated to date.
These additional measurements can be used to test the PN predictions of the
underlying theory of gravity. Since all of these parameters are functions of
the two component masses, there is strong correlation between the parameters
when treated independently. Using Singular Value Decomposition of the Fisher
information matrix, we remove this correlations and obtain a new set of
parameters which are linear combinations of the original phasing coefficients.
We show that the new set of parameters can be estimated with significantly
improved accuracies which has implications for the ongoing efforts to implement
parametrised tests of PN theory in the data analysis pipelines.Comment: 17 pages, 6 figures, Accepted for publication in Classical and
Quantum Gravity (Matches with the published version
- …