We study a very general class of games --- multi-dimensional aggregative
games --- which in particular generalize both anonymous games and weighted
congestion games. For any such game that is also large, we solve the
equilibrium selection problem in a strong sense. In particular, we give an
efficient weak mediator: a mechanism which has only the power to listen to
reported types and provide non-binding suggested actions, such that (a) it is
an asymptotic Nash equilibrium for every player to truthfully report their type
to the mediator, and then follow its suggested action; and (b) that when
players do so, they end up coordinating on a particular asymptotic pure
strategy Nash equilibrium of the induced complete information game. In fact,
truthful reporting is an ex-post Nash equilibrium of the mediated game, so our
solution applies even in settings of incomplete information, and even when
player types are arbitrary or worst-case (i.e. not drawn from a common prior).
We achieve this by giving an efficient differentially private algorithm for
computing a Nash equilibrium in such games. The rates of convergence to
equilibrium in all of our results are inverse polynomial in the number of
players n. We also apply our main results to a multi-dimensional market game.
Our results can be viewed as giving, for a rich class of games, a more robust
version of the Revelation Principle, in that we work with weaker informational
assumptions (no common prior), yet provide a stronger solution concept (ex-post
Nash versus Bayes Nash equilibrium). In comparison to previous work, our main
conceptual contribution is showing that weak mediators are a game theoretic
object that exist in a wide variety of games -- previously, they were only
known to exist in traffic routing games