The persistent proximity of insulating and metallic phases, a puzzling
characterestic of manganites, is argued to arise from the self organization of
the twofold degenerate e_g orbitals of Mn into localized Jahn-Teller(JT)
polaronic levels and broad band states due to the large electron - JT phonon
coupling present in them. We describe a new two band model with strong
correlations and a dynamical mean-field theory calculation of equilibrium and
transport properties. These explain the insulator metal transition and colossal
magnetoresistance quantitatively, as well as other consequences of two state
coexistence