175 research outputs found
Bulk and surface switching in Mn-Fe-based Prussian Blue Analogues
Many Prussian Blue Analogues are known to show a thermally induced phase
transition close to room temperature and a reversible, photo-induced phase
transition at low temperatures. This work reports on magnetic measurements,
X-ray photoemission and Raman spectroscopy on a particular class of these
molecular heterobimetallic systems, specifically on
Rb0.81Mn[Fe(CN)6]0.95_1.24H2O, Rb0.97Mn[Fe(CN)6]0.98_1.03H2O and
Rb0.70Cu0.22Mn0.78[Fe(CN)6]0.86_2.05H2O, to investigate these transition
phenomena both in the bulk of the material and at the sample surface. Results
indicate a high degree of charge transfer in the bulk, while a substantially
reduced conversion is found at the sample surface, even in case of a near
perfect (Rb:Mn:Fe=1:1:1) stoichiometry. Thus, the intrinsic incompleteness of
the charge transfer transition in these materials is found to be primarily due
to surface reconstruction. Substitution of a large fraction of charge transfer
active Mn ions by charge transfer inactive Cu ions leads to a proportional
conversion reduction with respect to the maximum conversion that is still
stoichiometrically possible and shows the charge transfer capability of metal
centers to be quite robust upon inclusion of a neighboring impurity.
Additionally, a 532 nm photo-induced metastable state, reminiscent of the high
temperature Fe(III)Mn(II) ground state, is found at temperatures 50-100 K. The
efficiency of photo-excitation to the metastable state is found to be maximized
around 90 K. The photo-induced state is observed to relax to the low
temperature Fe(II)Mn(III) ground state at a temperature of approximately 123 K.Comment: 12 pages, 8 figure
Electronic structure study by means of X-ray spectroscopy and theoretical calculations of the "ferric star" single molecule magnet
The electronic structure of the single molecule magnet system
M[Fe(L)2]3*4CHCl3 (M=Fe,Cr; L=CH3N(CH2CH2O)2) has been studied using X-ray
photoelectron spectroscopy, X-ray absorption spectroscopy, soft X-ray emission
spectroscopy, and density functional calculations. There is good agreement
between theoretical calculations and experimental data. The valence band mainly
consists of three bands between 2 eV and 30 eV. Both theory and experiments
show that the top of the valence band is dominated by the hybridization between
Fe 3d and O 2p bands. From the shape of the Fe 2p spectra it is argued that Fe
in the molecule is most likely in the 2+ charge state. Its neighboring atoms
(O,N) exhibit a magnetic polarisation yielding effective spin S=5/2 per iron
atom, giving a high spin state molecule with a total S=5 effective spin for the
case of M = Fe.Comment: Fig.2 replaced as it will appear in J. Chem. Phy
A Unified Theoretical Description of the Thermodynamical Properties of Spin Crossover with Magnetic Interactions
After the discovery of the phenomena of light-induced excited spin state
trapping (LIESST), the functional properties of metal complexes have been
studied intensively. Among them, cooperative phenomena involving low spin-high
spin (spin-crossover) transition and magnetic ordering have attracted
interests, and it has become necessary to formulate a unified description of
both phenomena. In this work, we propose a model in which they can be treated
simultaneously by extending the Wajnflasz-Pick model including a magnetic
interaction. We found that this new model is equivalent to
Blume-Emery-Griffiths (BEG) Hamiltonian with degenerate levels. This model
provides a unified description of the thermodynamic properties associated with
various types of systems, such as spin-crossover (SC) solids and Prussian blue
analogues (PBA). Here, the high spin fraction and the magnetization are the
order parameters describing the cooperative phenomena of the model. We present
several typical temperature dependences of the order parameters and we
determine the phase diagram of the system using the mean-field theory and Monte
Carlo simulations. We found that the magnetic interaction drives the SC
transition leading to re-entrant magnetic and first-order SC transitions.Comment: 30pages, 11figure
Ruthenocuprates RuSr2(Eu,Ce)2Cu2O10: Intrinsic magnetic multilayers
We report ac susceptibility data on RuSr_2(Eu,Ce)_2Cu_2O_(10-y) (Ru-1222, Ce
content x=0.5 and 1.0), RuSr_2GdCu_2O_8 (Ru-1212) and SrRuO_3. Both Ru-1222
(x=0.5, 1.0) sample types exhibit unexpected magnetic dynamics in low magnetic
fields: logarithmic time relaxation, switching behavior, and `inverted'
hysteresis loops. Neither Ru-1212 nor SrRuO_3 exhibit such magnetic dynamics.
The results are interpreted as evidence of the complex magnetic order in
Ru-1222. We propose a specific multilayer model to explain the data, and note
that superconductivity in the ruthenocuprate is compatible with both the
presence and absence of the magnetic dynamics.Comment: 9 pages, 11 figures, Revtex; submitted to Phys.Rev.
Interplay between the Charge Transport Phenomena and the Charge-Transfer Phase Transition in RbxMn[Fe(CN)6]y · zH2O
Charge transport and dielectric measurements were carried out on compacted powder and single-crystal samples of bistable RbxMn[Fe(CN)6]y · zH2O in the two valence-tautomeric forms (MnIIFeIII and MnIIIFeII) as a function of temperature (120-350 K) and frequency (10-2-106 Hz). The complex conductivity data reveal universal conductivity behavior and obey the Barton-Nakajima-Namikawa relationship. The charge transport is accompanied by dielectric relaxation that displays the same thermal activation energy as the conductivity. Surprisingly, the activation energy of the conductivity was found very similar in the two valence-tautomeric forms (∼0.55 eV), and the conductivity change between the two phases is governed mainly by the variation of the preexponential factor in each sample. The phase transition is accompanied by a large thermal hysteresis of the conductivity and the dielectric constant. In the hysteresis region, however, a crossover occurs in the charge transport mechanism at T < ∼220 K from an Arrhenius-type to a varying activation energy behavior, conferring an unusual “double-loop” shape to the hysteresis
Single-nanoparticle phase transitions visualized by four-dimensional electron microscopy
The advancement of techniques that can probe the behaviour of individual nanoscopic objects is of paramount importance
in various disciplines, including photonics and electronics. As it provides images with a spatiotemporal resolution,
four-dimensional electron microscopy, in principle, should enable the visualization of single-nanoparticle structural
dynamics in real and reciprocal space. Here, we demonstrate the selectivity and sensitivity of the technique by visualizing
the spin crossover dynamics of single, isolated metal–organic framework nanocrystals. By introducing a small aperture in
the microscope, it was possible to follow the phase transition and the associated structural dynamics within a single
particle. Its behaviour was observed to be distinct from that imaged by averaging over ensembles of heterogeneous
nanoparticles. The approach reported here has potential applications in other nanosystems and those that undergo
(bio)chemical transformations
Enforcing Multifunctionality: A Pressure-Induced Spin-Crossover Photomagnet
Photomagnetic compounds are usually
achieved by assembling preorganized
individual molecules into rationally designed molecular architectures
via the bottom-up approach. Here we show that a magnetic response
to light can also be enforced in a nonphotomagnetic compound by applying
mechanical stress. The nonphotomagnetic cyano-bridged Fe<sup>II</sup>–Nb<sup>IV</sup> coordination polymer {[Fe<sup>II</sup>(pyrazole)<sub>4</sub>]<sub>2</sub>[Nb<sup>IV</sup>(CN)<sub>8</sub>]·4H<sub>2</sub>O}<sub><i>n</i></sub> (<b>FeNb</b>) has been
subjected to high-pressure structural, magnetic and photomagnetic
studies at low temperature, which revealed a wide spectrum of pressure-related
functionalities including the light-induced magnetization. The multifunctionality
of <b>FeNb</b> is compared with a simple structural and magnetic
pressure response of its analog {[Mn<sup>II</sup>(pyrazole)<sub>4</sub>]<sub>2</sub>[Nb<sup>IV</sup>(CN)<sub>8</sub>]·4H<sub>2</sub>O}<sub><i>n</i></sub> (<b>MnNb</b>). The <b>FeNb</b> coordination polymer is the first pressure-induced spin-crossover
photomagnet
Molecular signatures for CCN1, p21 and p27 in progressive mantle cell lymphoma
Mantle cell lymphoma (MCL) is a comparatively rare non-Hodgkin’s lymphoma characterised by overexpression of cyclin D1.Many patients present with or progress to advanced stage disease within 3 years. MCL is considered an incurable disease withmedian survival between 3 and 4 years. We have investigated the role(s) of CCN1 (CYR61) and cell cycle regulators inprogressive MCL. We have used the human MCL cell lines REC1 G519 > JVM2 cells by RQ-PCR, depicting a decrease in CCN1expression with disease progression. Investigation of CCN1 isoform expression by western blotting showed that whilst expres-sion of full-length CCN1 was barely altered in the cell lines, expression of truncated forms (18–20 and 28–30 kDa) decreasedwith disease progression. We have then demonstrated that cyclin D1 and cyclin dependent kinase inhibitors (p21CIP1and p27KIP1)are also involved in disease progression. Cyclin D1 was highly expressed in REC1 cells (OD: 1.0), reduced to one fifth in G519cells (OD: 0.2) and not detected by western blotting in JVM2 cells. p27KIP1followed a similar profile of expression as cyclin D1.Conversely, p21CIP1was absent in the REC1 cells and showed increasing expression in G519 and JVM2 cells. Subcellularlocalization detected p21CIP1/p27KIP1primarily within the cytoplasm and absent from the nucleus, consistent with altered roles in treatment resistance. Dysregulation of the CCN1 truncated forms are associated with MCL progression. In conjunction withreduced expression of cyclin D1 and increased expression of p21, this molecular signature may depict aggressive disease andtreatment resistance
A single dividing cell population with imbalanced fate drives oesophageal tumour growth.
Understanding the cellular mechanisms of tumour growth is key for designing rational anticancer treatment. Here we used genetic lineage tracing to quantify cell behaviour during neoplastic transformation in a model of oesophageal carcinogenesis. We found that cell behaviour was convergent across premalignant tumours, which contained a single proliferating cell population. The rate of cell division was not significantly different in the lesions and the surrounding epithelium. However, dividing tumour cells had a uniform, small bias in cell fate so that, on average, slightly more dividing than non-dividing daughter cells were generated at each round of cell division. In invasive cancers induced by Kras(G12D) expression, dividing cell fate became more strongly biased towards producing dividing over non-dividing cells in a subset of clones. These observations argue that agents that restore the balance of cell fate may prove effective in checking tumour growth, whereas those targeting cycling cells may show little selectivity.Cancer Research UK (Grant ID: C609/A17257), Medical Research Council (Grant-in-Aid), DFG (Research Fellowship), Engineering and Physical Sciences Research Council (Critical Mass Grant), Wellcome Trust (Grant ID: 098357/Z/12/Z)This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/ncb340
- …