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Charge transport and dielectric measurements were carried out on compacted powder and single-crystal samples
of bistable RbxMn[Fe(CN)6]y · zH2O in the two valence-tautomeric forms (MnIIFeIII and MnIIIFeII) as a function
of temperature (120-350 K) and frequency (10-2-106 Hz). The complex conductivity data reveal universal
conductivity behavior and obey the Barton-Nakajima-Namikawa relationship. The charge transport is
accompanied by dielectric relaxation that displays the same thermal activation energy as the conductivity.
Surprisingly, the activation energy of the conductivity was found very similar in the two valence-tautomeric
forms (∼0.55 eV), and the conductivity change between the two phases is governed mainly by the variation
of the preexponential factor in each sample. The phase transition is accompanied by a large thermal hysteresis
of the conductivity and the dielectric constant. In the hysteresis region, however, a crossover occurs in the
charge transport mechanism at T < ∼220 K from an Arrhenius-type to a varying activation energy behavior,
conferring an unusual “double-loop” shape to the hysteresis.

1. Introduction
The mixed-valence compound KFe[Fe(CN)6] (Prussian blue)

and related cyanide complexes of transition metal ions have
been extensively investigated in the past because of their
interesting electronic structure1 as well as for their appealing
optical properties2 and rich electrochemistry.3 More recently,
they have received much attention also for their remarkable
magnetic properties, such as high Curie temperatures4 and
photomagnetism.5 In some of these complexes, a charge transfer
phase transition, associated with a metal-to-metal electron
transfer, occurs due to the strong electron-lattice interactions.
For example, the compound NaxCo[Fe(CN)6]y · zH2O exhibits
(in certain x, y, z stoichiometries) a first-order thermal phase
transition between the FeIII(S ) 1/2)-CN-CoII(S ) 3/2) and
the FeII(S ) 0)-CN-CoIII(S ) 0) states.6 These two phases
display markedly different magnetic, optical, and electrical
properties. Concerning this latter property, Sato et al.7 reported
recently that the conductivity-vs-temperature curve in this
compound displays a hysteresis loop similar to that observed
in the variable temperature magnetic susceptibility measurements.

A few investigations have already considered the electrical
conductivity of Prussian blue and its analogues in the solid
state.8-11 Similar to other low-mobility, disordered solids, the
charge transport is thought to take place in these materials due
to hopping conduction. In general, a nearest-neighbor electron
transfer is considered as the predominant process, but ionic
conductivity may also occur to some extent, especially in wet
samples. In this latter case, apparently, alkali metal ions are
transported in their hydrated forms, and the water molecules
present in the interstices lower significantly the barriers to the

movement of these ions. In any case, the charge transport is
accompanied by dipole relaxation phenomena. In samples with
low water content, the dipole motion corresponds to the
intervalence charge transfer between the two transition metal
sites (MA

2+-CN-MB
3+TMA

3+-CN-MB
2+). By determining

the rate at which these dipole moments are oscillating, one can
thus determine the rate of the intervalence electron transfer.
Unfortunately, the comparison of data obtained on different
samples is not straightforward, owing to their nonstoichiometric,
disordered nature and the presence of water in the interstices
of the lattice, which are difficult to control in the experiments.
For this reason, the possibility to investigate the same sample
under the same conditions (T, P, etc.) but in two different
electronic states (coexisting within a large thermal hysteresis
region) offers a unique opportunity to investigate the mechanism
of the charge transport in this family of compounds and, in
particular, the influence of the electronic and crystallographic
structure on the site-to-site electron hopping process and
associated dipole relaxation phenomena. In addition to these
fundamental aspects, it is also of interest to see if the
conductivity changes accompanying the phase transition in this
type of compounds can be sufficiently important to be eventually
used in practical applications, such as memory or switching
devices.

In this paper, we report on the charge transport and dielectric
properties of the bistable Prussian blue analogue
RbxMn[Fe(CN)6]y · zH2O investigated in a broad frequency range
(10-2-106 Hz). We have chosen this compound12-14 because it
presents an exceptionally large thermal hysteresis loop (up to
138 K),15 thus providing a large range of temperatures for
electrical measurements in the two phases. The high-temperature
(HT) FeIII(S ) 1/2)-CN-MnII(S ) 5/2) form of this compound
has a face-centered cubic structure (F43m), whereas in the low-
temperature (LT) FeII(S ) 0)-CN-MnIII(S ) 2) phase, the
crystal structure is tetragonal (I4m2) and the MnN6 octahedra

* Corresponding authors. E-mails: (G.M.) molnar@lcc-toulouse.fr, (A.B.)
boussek@lcc-toulouse.fr, (P.D) demont@cict.fr.

† Laboratoire de Chimie de Coordination, CNRS, Toulouse.
‡ University of Groningen.
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show a Jahn-Teller-type distortion.16 It should be noted,
however, that for low Rb+ content, the LT phase was reported
to retain the cubic structure. In any case, the formation of the
LT phase is accompanied by a discontinuous lattice contraction
of ∼10% and a reduction of the average Fe-Mn distance from
5.27 to 5.10 Å.17 It is important to note also that the width and
the position of the hysteresis loop in this compound depends
strongly on the particular x, y, z stoichiometry obtained during
the precipitation of the compound, since the extreme insolubility
makesfordifficultyinachievingexactlyreproducedcompositions.18,19

For stoichiometries close to the idealized x ) y ) 1 composition,
the phase transition occurs around 230 and 300 K in the heating
and cooling cycles, respectively. In most cases, however, the
system contains [Fe(CN)6]3- vacancies (Figure 1). The formation
of these vacancies leads to lower Rb+ concentration (x) to
maintain the charge neutrality. Moreover, the H2O content (z)
increases, since the water molecules complete the coordination
around the MnII ion at the place of the missing [Fe(CN)6]3-

ligands. This change in the coordination sphere of the MnII ions
leads to a significant lowering of the ligand field and stabilization
of the HT phase; hence, the transition temperature decreases,
and the hysteresis loop becomes larger.18 If the vacancy
concentration exceeds a certain limit (y < ∼0.9), the compound
remains in the HT state down to liquid helium temperatures.19

2. Experimental Section

Four polycrystalline samples of RbxMn[Fe(CN)6]y · zH2O with
different stoichiometries have been synthesized following
“method 2” described in ref 19. The precipitates were filtered,
washed with water, dried at 90 °C, and kept in a desiccator at
room temperature between the different measurements. The
composition of the obtained brown powders was established
from elemental analysis as Rb0.76Mn[Fe(CN)6]0.91 ·1.6H2O (1),
Rb0.82Mn[Fe(CN)6]0.96 ·0.7H2O (2), Rb0.96Mn[Fe(CN)6]0.98 ·0.75H2O
(3), and Rb0.38Mn[Fe(CN)6]0.82 ·4.5H2O (4). Single crystals of
RbMn[Fe(CN)6] ·H2O (5) were grown by the method described in
ref 20.

The dc and ac conductivity measurements have been carried
out in the two-probe geometry either on powder samples
(diameter 10 mm, thickness ∼0.1 mm) contained in a Teflon
sample holder between two stainless steel electrodes or on pellets
(diameter 3.3 mm, thickness 0.4 mm) compacted at a pressure
of 70 bar for 5 min. There were no significant differences in
conductivities or magnetic susceptibilities between the powder
samples and pellets, although the latter gave, in general,
somewhat better results in terms of standard deviation of the
measured conductivity values. In the case of single crystals (∼1
mm size), electrical contacts were fixed using a silver paste.
Direct current as a function of applied dc voltage (0.05-20 V)
and temperature (160-350 K) were measured using a Keithley

Instruments Inc. (Cleveland, OH) model 617 electrometer and
a home-built, electrically shielded, He-exchange gas cryostat.
The temperature was varied at a rate of 1 K min-1. AC
conductivity measurements were carried out as a function of
frequency (10-2-106 Hz) and temperature (120-350 K) by
means of a BDS4000 broadband dielectric spectrometer coupled
to a Quatro Cryosystem (Novocontrol Technologies, Hundsangen,
Germany) at an applied ac voltage of 1 V. Frequency sweeps
were carried out isothermally. Thermoelectric power S () dV/
dT) measurements were performed on pellets using a device
described elsewhere.21 The Seebeck coefficients could be de-
termined only above ∼300 K because of the high resistance of
the samples at lower temperatures. Variable-temperature dc
magnetic susceptibility measurements were carried out on pow-
der, pellet, and single-crystal samples at heating and cooling
rates of 1 K min-1 using a Quantum Design (San Diego, CA)
MPMS2 SQUID magnetometer operated at 2 T magnetic field.
The magnetic properties of the samples were checked several
times during the experiments, and no significant evolution has
been observed.

3. Results

Figure 2 shows the temperature dependence of the effective
magnetic moment (µeff) for compound 1. The µeff value at 300
K (HT phase) is 5.5 µB. When decreasing the temperature, µeff

decreases slowly and drops more abruptly between ∼210 and
190 K. At 150 K, it reaches the value of 4.9 µB. When heating
the sample, the reverse transition occurs in the 235-295 K
temperature range. It should be noted that the HT value of the
magnetic moment differs significantly from the expected spin-
only value of 6.1 µB. Such differences have been observed
previously19 and can be attributed to the incomplete nature of
the phase transition. The temperature dependence of the dc
conductivity, σdc, (measured at 2 and 20 V) is shown in Figure
2, together with the magnetic data. At 300 K, the electrical
conductivity is ∼10-7 S m-1, which is 2 orders of magnitude
higher than that reported for vacuum-dried Prussian blue.8 σdc

is strongly thermally activated in the investigated temperature
range and drops to 10-12 S m-1 at 180 K. The conductivity
displays a large thermal hysteresis loop between ∼220 and 300
K. The hysteresis region on the high temperature side corre-
sponds well to the magnetic data, but a significant difference is
observed on the low temperature side. Between 210 and 170
K, where the HT phase transforms to the LT phase, the
conductivity has a similar value independently if it is recorded
in the heating or cooling cycles. In a first instance, one may
suppose therefore that there is a crossover in the conduction
mechanism around 220 K and the conductivity becomes rather

Figure 1. Representation of the unit cell of RbMn[Fe(CN)6] ·H2O.20

Figure 2. Temperature dependences of the dc conductivity (measured
at 2 and 20 V bias) and the effective magnetic moment for sample 1.



insensitive to the actual electronic and crystallographic form
below the crossover point.

Current-vs-electric-field (corresponding to an applied dc
voltage bias between 50 mV and 20 V) data were also recorded
at different temperatures. The same currents were measured for
a given field independently if it was reached by increasing or
decreasing the applied voltage. A slight deviation from the
ohmic behavior appeared, but no significant difference in the
electric field dependence could be observed below, around, and
above the crossover point at 220 K.

To better understand the possible origin of this crossover point
and the effects of the valence-tautomeric phase transition, we
have investigated the frequency as well as temperature-depend-
ent behavior of the complex conductance. The temperature
dependence of the real part σ′(ω) of the ac conductivity is shown
in Figure 3 for the different samples. In sample 1, at 125 kHz,
the conductivity exhibits very weak temperature dependence,
and no hysteresis is observed (Figure 3a). At 10 mHz, the
temperature dependence of the ac conductivity is the same,
within the measurement errors, as that of σdc (σ′ (300 K) ) 9.6
× 10-8 S m-1 and σ′ (180 K) ) 1.3 × 10-12 S m-1). At this
frequency, σ′ exhibits a hysteresis, which corresponds well to

the hysteresis region detected by magnetic measurements, but
a crossing of the heating and cooling curves occurs in the
hysteresis region around 230 K, very close to the crossing
observed in the dc measurement. The conductivity behavior at
30 Hz appears to be intermediate between the high- and low-
frequency cases. Samples 2 and 3 exhibit somewhat different
phase transition temperatures, and thus, the thermal hysteresis
of the magnetic moment differs to some extent. For sample 2,
we observed σ′ (300 K, 10 mHz) ) 5 × 10-8 S m-1 and σ′
(180 K, 10 mHz) ) 1.2 × 10-12 S m-1 and a conductivity
hysteresis loop between 170 and 305 K with a crossover point
close to 220 K (Figure 3b). In the case of sample 3, the measured
values (σ′ (300 K, 10 mHz) ) 1.6 × 10-8 S m-1 and σ′ (180
K, 10 mHz) ) 4.2 × 10-13 S m-1) are close to those of the two
other compounds. On the other hand, in this sample, the phase
transition is practically complete at 220 K, which explains why
one cannot observe the crossover in the conductivity hysteresis
(Figure 3c). Similar results were obtained on the single-crystal
sample 5, as well (Figure 3e), but the ill-defined electrode
geometry makes the data analysis more difficult (vide infra).
We have also measured the ac conductivity in sample 4, which
does not exhibit charge transfer phase transition and remains

Figure 3. Temperature dependence of the ac conductivity at different frequencies and the effective magnetic moment for samples 1 (a), 2 (b), 3
(c), 4 (d) and 5 (e). Closed and open symbols correspond to the heating and cooling cycles, respectively. Data points are connected to guide the
eye.



in the HT phase in the whole temperature range. The conductiv-
ity of this sample was found somewhat higher than the two
others (σ′ (300 K, 10 mHz) ) 7.0 × 10-7 S m-1 and σ′ (180 K,
10 mHz) ) 3.2 × 10-11 S m-1), and no hysteresis of σ occurs
(Figure 3d).

The temperature dependence of the ac conductivity can be
better understood from Figure 4, which displays the frequency
dependence of σ′ at different temperatures for sample 2 in the
heating mode. (Analogous behaviors were observed on heating
and cooling in each sample, which are, therefore, omitted.) At
high temperatures and low frequencies, σ′ is constant and closely
matches the dc values. As the frequency increases, a gradual
dispersion sets in, resulting in an apparent power law depen-
dence (σ′ ∼ ωn) with an exponent n = 0.6 at high temperatures.
The crossover frequency (ωc) that separates the power-law and
the frequency-independent (dc) regimes decreases continuously
with decreasing temperature from ∼0.5 kHz to 10 mHz between
345 and 225 K. This behavior is typical to disordered solids
consisting of regions with different conductivities.22 At high
frequencies, the carrier motion is localized, but as the frequency
decreases, charge transport must extend over longer distances
and will be increasingly limited by bottlenecks of poorly
conducting regions; therefore, the conductivity decreases, as
well. The fact that the temperature dependence of σ′ in the
power-law regime is less pronounced is consistent with the
observation that the thermal hysteresis becomes less detectable
at high frequencies and low temperatures.

The measurement of the impedance allows one to determine
both the complex conductivity and the complex dielectric
function, which are related to each other by σ* ) iωε0ε* (ε0

being the permittivity of the free space). The motion of the
charge carriers in low-mobility solids is accompanied by an
electrical relaxation; therefore, the analysis of ε′ (or σ′′) can
contribute to the understanding of the charge transport mech-
anisms. In Prussian blue analogues, the electron transfer between
the metallic sites is accompanied by a change in the direction
of the dipole moments in the sample (for example, MnIIf FeIII

vs MnIII r FeII). Therefore, one can expect a significant
difference in ε′ with the phase transition between the HT and
LT forms of RbxMn[Fe(CN)6]y · zH2O. Ohkoshi et al.23 recently
reported dielectric constant measurements on this compound
both in the radio frequency (1-100 kHz) and optical (300-1000
THz) regions. Though reflecting different processes (dipolar and
electronic) ε′ was found to change significantly upon the phase
transition in both frequency domains and the observed hysteresis
loop was comparable with the magnetic susceptibility data. In
our case, we investigated ε′ in the 10 mHz-1 MHz frequency

domain. As an example, Figure 5 shows the thermal variations
of ε′ measured at 2 kHz for the different samples (with and
without thermal hysteresis of the magnetic moment). The main
observation here is that the temperature dependence of the
dielectric constant corresponds also to the hysteresis of the
magnetic moment. As in the conductivity data, a crossing of
cooling and heating curves appears in the hysteresis region close
to 220 K. In the low temperature limit, ε′ has a value close to
3.5-4 in each sample, similar to what was reported by Ohkoshi
et al.23

Unfortunately, the frequency and temperature dependences
of the dielectric permittivity are difficult to analyze by means
of the conventional Cole-Cole representation because a strong
low-frequency dispersion of ε′ and ε′′ appears when the
temperature increases. This behavior is characteristic of charged
carrier systems.24 By using the electric modulus formalism for
the treatment of dielectric data, an enhancement of the contribu-
tion of conductivity effects can be obtained.25 The conductivity
relaxation model, in which a dielectric modulus is defined by
M*(ω) ) 1/ε*(ω), can be used to obtain information about the
relaxation mechanism in the absence of a well-defined dielectric
loss peak. As far as conductive effects are concerned, the electric
loss moduli M′′(ω) exhibit relaxation maxima, in contrast to
the relatively smooth patterns of ε′′(ω) plots. Another advantage
arises from the fact that the contribution of the electrode
screening effect in the low-frequency spectrum tail can be
eliminated. To estimate the dielectric relaxation in
RbxMn[Fe(CN)6]y · zH2O samples, the complex permittivity is
converted to the complex electric modulus. As an example,
Figure 6 displays the imaginary part of the electric modulus
(scaled by M′′ max) as a function of the frequency of the electrical
field (scaled by ωmax) at different temperatures in the heating
cycle for sample 2. (Analogous behaviors were observed on
heating and cooling in each sample, which are, therefore,
omitted. The perfect overlap of the curves for the investigated
temperatures leads to a master curve. This means that all
dynamic processes occurring at different temperatures exhibit
a similar activation energy and that the distribution of the
relaxation time is independent of temperature. The frequency
of the M′′ peak maximum is defined as the dielectric relaxation
frequency (ωp), and it was found to increase with increasing
temperature.

4. Discussion

Charge Transport and Dielectric Relaxation. The tem-
perature dependence of the dc conductivity of each RbxMn-

Figure 4. Frequency dependence of the ac conductivity for sample 2
at fixed temperatures in the heating cycle. Curves are displayed by
steps of 10 K. Data points are connected to guide the eye.

Figure 5. Temperature dependence of the dielectric constant (ε′) at 2
kHz for samples 1-4. Closed and open symbols correspond to the
heating and cooling cycles, respectively. Data points are connected to
guide the eye.



[Fe(CN)6]y · zH2O sample exhibits two regions, independent
of if they exhibit charge transfer phase transition. Above
∼220 K, the temperature dependence of the dc conductivity
is described, as expected for a small polaron hopping mech-
anism, by an Arrhenius equation:26

σdc(T)) (B ⁄ T) exp(-Edc⁄kBT) (1)

The activation energy of the dc conductivity (Edc) was 0.57 (1),
0.56 (2), 0.51 (1), and 0.43 (1) eV for samples 1, 2, 3 and 4,
respectively (Table 1). The activation energies were found to
be the same within the experimental uncertainty in the HT and
LT phases. (We shall note here that the Edc values have been
extracted actually from the frequency-independent part of the
ac conductivity data, displayed in Figure 3.) One may speculate
that the smaller activation energy obtained in the case of sample
4 is due to its significantly higher water content and associated
higher dielectric constant.8 When the temperature decreases
below ∼220 K, deviations from eq 1 indicate the presence of a
change in the conduction mechanism. In fact, the observation
of a variable activation energy (i.e., non-Arrhenius) conduction
mechanism at low temperatures is a quite general feature of
small polaron hopping.27 As has been discussed by Austin and
Mott, at relatively low temperatures, the zero-point energy
allows polaron hopping to occur without any thermal activa-
tion.28 These authors predicted a departure from the linear
ln(σdcT) vs T-1 behavior for temperatures below T ) θD/2, where
θD is defined by

kBθD ) pωph (2)

with ωph being the average (or predominant) phonon frequency.
In our case, this phonon frequency ωph can be calculated as 5.8
× 1013 s-1 (∼310 cm-1), which falls in the range of typical
frequencies of breathing modes of the metal-coordination
polyhedra in Prussian blue analogues.29

As mentioned before, the conduction due to a process of site-
to-site charge transfer must involve a dielectric relaxation. This
is because a hop to a new site can lead to successful charge
transport only if the polarization cloud follows. This electric
relaxation requires a relaxation time, τ. With increasing
frequency, the polarization (or dielectric constant) will mono-
tonically decrease because the relaxation cannot follow the
electrical field beyond a certain frequency. Indeed, this has been
observed in our samples, as well. On the low frequency side,
the dispersion of ε′ has its physical origin in electrode
polarization effects. On the other hand, at higher frequencies,

the analysis of the electrical modulus reveals a dipole relaxation
process, which is thermally activated. To determine with more
precision the frequency of the dielectric relaxation peaks, the
experimental data of the dielectric loss modulus M′′(ω) can be
conveniently fitted by a superposition of two or three
Havriliak-Negami functions,30

M ″ (ω))∑
j)1

∆Mj

[1+ (iωτj
HN)Rj]�j

(3)

where τHN ) 1/ωp[sin Rπ/2(1 + �)]1/R[sin R�/2(1 + �)]-1/R and
∆M are the mean relaxation time of the relaxation time
distribution and the relaxation strength, respectively. The two
shape parameters R and � determine the logarithmic slope of
the low-frequency loss tail R and the high-frequency loss tail
-(R�). In both samples, ωp exhibits a thermally activated
dependence; that is, it obeys the Arrhenius equation:

ωp(T))ω0p exp(-Ep⁄kBT) (4)

Figure 7 shows the Arrhenius plot of the two main relaxation
frequencies for sample 2 (in the heating cycle). The two main
relaxation processes show very similar temperature dependences,
although the values of the preexponential factor ω0p are
somewhat different. Figure 7 also displays the temperature
dependence of the crossover frequency, ωc, determined from
the ac conductivity data of the same sample. Indeed, the
frequency dependence of σ′ is usually well-described by using
Jonscher’s “universal dielectric response” (UDR),24

σ′(ω) ) σdc +Aωn ) σdc[1+ (ω ⁄ ωc)
n] (5)

where the characteristic frequency, ωc, corresponds to the onset
of the conductivity dispersion and n is the frequency exponent,
which has a value around 0.6 (( 0.05) in the high temperature
range (see the inset of Figure 7). The crossover frequency
corresponds to the hopping frequency, ωh, of the charge carriers
and shows a thermal variation similar to the dielectric modulus
loss peak maximum. Indeed, as seen in Figure 7, the hopping
frequency is also thermally activated for sample 2, and it is
fitted to the Arrhenius equation,

ωh(T))ω0h exp(-Eh⁄kBT) (6)

where Eh is the activation energy for hopping and ω0h is the
attempt frequency. Upon comparing the values of Ep (0.55(1)
eV) and the activation energy of hopping (Eh ) 0.53(2) eV) in
the LT phase (heating mode), it can be assumed that these two
representations are completely equivalent, even if they empha-
size different aspects of the underlying mechanisms of charge
transport.

In Figure 8, the temperature dependence of direct current
conductivity, using eq 1, is compared to the temperature
behavior of the main relaxation frequency ωp (see eq 4) for
sample 2. Table 1 summarizes the fitting results for each sample.
The activation energy of the relaxation frequency (Ep) was
evaluated as ∼0.54(1), 0.56(1), and 0.42(2) eV for samples 2,
3, and 4. The fact that Edc = Ep implies that the charge carrier
has to overcome the same energy barrier while conducting as
well as relaxing. The observed dielectric relaxation is therefore
due to the electrical conduction. This also means that ωp and
σdc are proportional and the constant of proportionality is
universal, varying only weakly with the temperature. This
finding is known as the Barton-Nakajima-Namikawa relation-
ship and indicates that the dc and ac conductivities are closely
related to each other and based on the same mechanism of
charge transport. Indeed, the frequency-dependent conductivity

Figure 6. Plot of normalized loss electric modulus (M′′/M′′ max) vs
reduced frequency (ω/ωmax) at various temperatures in the heating cycle
for sample 2. Curves are displayed by steps of 20 K. Data points are
connected to guide the eye.



of many disordered materials (inorganic glasses, polymers,
doped semiconductors, and ionic conductors) is known to exhibit
such universality, and their behavior can be scaled to a master
curve (i.e., the conductivity data follow the time-temperature
superposition).24

The above discussion was restricted to compacted powder
samples because they provided the highest quality complex
conductivity data (due to their favorable electrode geometry).
However, in polycrystalline materials, in addition to bulk
conductivity, grain boundary resistance, and polarization have
to be considered, as well, especially in the low-frequency range.
Under the action of an electric field, the grains are polarized by
the accumulation of charge carriers on their boundaries, leading
to an additional relaxation component in the dielectric spectrum
of the material. In many cases, separation of the bulk and grain
boundary effects is straightforward by means of Cole-Cole type
plots of the complex impedance (or permittivity) data. In our
case, Cole-Cole arcs did not apply and only a continuous
increase of ε′′ with ε′ was observed. For this reason, we used
the modulus formalism for separating interfacial phenomena
from dipole relaxation due to charge hopping. For further
investigation of eventual grain boundary effects on the complex
conductivity of this material, we have investigated a single
crystal sample of RbMn[Fe(CN)6] ·H2O, as well (sample 5).20

Due to the small size (∼1 mm3) and nongeometrical shape of
the available crystals, the electrode geometry is ill-determined,
and this leads to high uncertainty in the absolute value of the
conductivity and also to a higher standard deviation of the data,
especially at low temperatures. Nevertheless, the conductivity
data on single crystals closely resembles those obtained on
polycrystalline samples (Figure 3e). Notably, we noticed a
marked deviation from an Arrhenius-type behavior below 220
K. Between 350 and 220 K, the conductivity falls 4 orders of
magnitude, similar to the polycrystalline case, which corresponds

to a thermal activation energy of ∼0.52 eV (Table 1). Note
here that in the single crystals, the phase transition takes place
rather gradualy between the pure HT phase and a mixed (1:1)
HT + LT form, and therefore, fitting cannot be carried out in
the LT phase. However, it appears clearly that both the
relaxation frequency and the conductivity of the LT form are
higher when compared to the pure HT phase (at a given
temperature). The frequency dependence of the conductivity
follows a power law, and as a consequence, the hysteresis of
the conductivity disappears at higher frequencies. The electric
loss moduli M′′(ω) exhibit temperature-dependent relaxation
maxima, and the M′(ω) curves at different temperatures can be
scaled to a master curve similar to the powder samples. The
activation energy of the relaxation is ∼0.50 eV. This means
that in the crystals, as well, the relationship Edc = Ep is
confirmed. The main difference between the single crystal and
polycrystalline samples is observed below ∼200 K in the low-
frequency region, where the crystals show significantly less
temperature-dependent (virtually activationless) conductivity.
Since there is no single straightforward theory that may allow
us to discuss the mechanism of this low-temperature conductiv-
ity process and the quality of the data is also rather poor at low
temperatures, the discussion of the interplay between the charge
transport and the charge-transfer phase transition will be
confined to the high-temperature region (>220 K).

Charge Transport and the Charge Transfer Phase Tran-
sition. As shown in Figures 2, 3, and 5, the thermal hysteresis
of the magnetic susceptibility can be clearly correlated with a
hysteresis of the dc conductivity as well as the dielectric
permittivity. However, inside the hysteresis region, a crossing
point appears in σdc(T) as well as in ε′(T) around 210-230 K,
leading to a strange “double-loop” curve, which is not observed
in the magnetic measurements. Clearly, this crossing point is
not related to the charge-transfer phase transition, since it is
observed in sample 4, neither is it related to another structural

Figure 7. Arrhenius plot of the relaxation frequencies, ωp, obtained
from the maximum in M′′(ω) and ωh, obtained from the nonlinear least-
squares fitting of σ′(ω) to eq 5 (sample 2, heating cycle). The solid
lines are the least-squares linear fits to eqs 4 and 6. The insert shows
the thermal variation of the power exponent n in eq 5.

Figure 8. Temperature dependence of the dc conductivity (triangles)
and the conductivity relaxation frequency (circles) for sample 2. Closed
and open symbols correspond to the heating and cooling cycles,
respectively. The solid lines are the least-squares linear fits to eqs 1
and 4.

TABLE 1: DC Conductivity and Dielectric Relaxation Activation Parameters for the Different Samples of
RbxMn[Fe(CN)6]y · zH2O in the LT and HT Phases Derived Using Eqs 1 and 4, Respectively

LT HT LT HT

Edc (eV) B (S cm-1 K) Edc (eV) B (Scm-1K) Ep (eV) ω0p (s-1) Ep (eV) ω0p (s-1)
1 0.57 ( 0.01 9200 ( 300 0.57 ( 0.01 1120 ( 110 a a a a
2 0.54 ( 0.01 670 ( 130 0.57 ( 0.01 450 ( 130 0.55 ( 0.01 (3.2 ( 1.6) × 1013 0.53 ( 0.01 (1.4 ( 0.6) × 1012

3 0.50 ( 0.01 820 ( 130 0.51 ( 0.01 770 ( 160 0.56 ( 0.01 (8.0 ( 1.6) × 1012 0.57 ( 0.01 (1.9 ( 1.9)× 1012

4 no phase transition 0.44 ( 0.01 45 ( 4 no phase transition 0.42 ( 0.02 (4.8 ( 0.2) × 1011

5 a a 0.52 ( 0.01 810 ( 80 a a 0.50 ( 0.01 (9 ( 3) × 109

a No reliable data.



modification, since powder X-ray diffraction, Raman spectro-
scopic, and differential scanning calorimetric measurements
revealed no singularity around 220 K. Therefore, we believe
that this crossing point is not related to any structural change
in the sample and should be associated with a departure from
an Arrhenius-like hopping process toward an activationless,
tunneling conduction mechanism (as described above).

In the high-temperature range, our observations point clearly
to a conduction mechanism by small polaron hopping. Given
that the water content of our samples was kept as low as
possible, we adopt the hypothesis of Rosseinsky et al.,10 and
we assign this hopping process to an intervalence electron
transfer, Mn2+-NC-Fe3+TMn3+-NC-Fe2+. This assignment
is corroborated by our thermopower measurements because the
sign of the Seebeck coefficient was negative in each sample.
(Typically, S exhibits values of about -120 ((20) µV/K
between 300 and 350 K.) Bearing in mind that this assignment
concerns only the high-temperature region, the possible effects
of the phase transition on the charge transport will now be
considered. In the case of hopping transport, we can use the
well-established relationship, using the Einstein diffusion equa-
tion, between the dc conductivity and the hopping frequency,26

σdc)(nce
2a2 ⁄ 6kBT)νp ) (nce

2a2 ⁄ 6kBT)ν0p[exp(-Ep ⁄ kBT)]

(7)

where νp ) ωp/2π, a is the hopping distance (i.e., the Fe-Mn
distance), nc is the carrier density (i.e., the density of Fe-Mn
pairs), and Ep is the activation energy for the hopping process.
This equation implies that the activation energy for ωp and σdc

is the same (Ep ) Edc), which we have already demonstrated
above. A further proof for the applicability of eq 7 in the present
case comes from the evaluation of nc, which appears to be on
the order of 3(( 2) × 1026 m-3 and nearly independent of the
temperature. This value is reasonably close to the theoretical
number density of Fe-Mn pairs of 3.4 × 1027 m-3 in
RbMn[Fe(CN)6] ·H2O if one takes into account that the hopping
probability will be necessarily reduced to some extent in the
real material due to the vacant metallic sites, charge disorder,
and interactions between the polarons.27

Figures 2 and 3 reveal clearly that the dc conductivity is
higher in the LT phase. Let us note that the same observation
was made by Sato et al. in the case of the compound
NaxCo[Fe(CN)6]y · zH2O.7 In the case of RbxMn[Fe(CN)6]y · zH2O,
the higher conductance (σdc) of the LT phase parallels the higher
hopping frequencies (ωp) (Figure 8), which can be explained
either by a lower activation barrier (Ep) or by a higher value of
the preexponential factor (ω0). In our samples 1 and 2, the
activation energy in the HT and LT phases was very similar
(0.54 ( 0.03 eV) (Table 1), whereas in the sample investigated
by Sato et al., the activation energy of the dc conductivity was
even smaller in the HT phase (0.34 eV) when compared to the
LT phase (0.54 eV). This points to the important role of the
preexponential factor, which increases in the case of sample 2
(for example) from (1.5 ( 0.6) × 1012 s-1 to (3.8 ( 2.6) ×
1013 s-1 when going from the HT to the LT phase. These values
of ω0 are of the order of the lattice phonon frequencies to which
carriers can be coupled. This central role of the phonons would
not be surprising, since strong electron-phonon interaction is
a prerequisite for small polaron formation, and the charge
transfer phase transition also involves a strong modification of
the lattice dynamics. Indeed, the LT phase is much stiffer due
to its reduced volume, and the Jahn-Teller distortion in the
LT phase also alters the electron-phonon coupling scheme.

Even if the uncertainty of the absolute values of ω0 are relatively
high, we stress that we observed an increase in the preexpo-
nential factor upon the HT f LT transition for each sample,
both in the dc conductivity and, independently, in the dielectric
relaxation data while the activation energy remained close to
constant. One should also note that the value of ω0 cannot be
directly associated with a particular phonon frequency, but it is
better described as an “effective attempt frequency” not only
because the charge carrier may be coupled to different (and
multiple!) phonon modes in the HT and LT phases but also
because of the possibility of nonadiabatic processes, which
decrease the probability of successful hopping events.31

In summary, we can say that the conductivity change upon
the charge transfer phase transition in RbxMn[Fe(CN)6]y · zH2O
is determined mainly by the variation of the preexponential
factor. Since the constants involved in σ0 (i.e., the hopping
distance, the phonon frequency, and density of donor-acceptor
pairs) change little from one phase to another or from one
stoichiometry to another, the value of σ0 is expected to vary
less than an order of magnitude upon the phase transition, which
has been confirmed here experimentally. We believe that the
comparable activation energy values in the HT and LT phases
occur only fortuitously. For example, one may speculate that
the shorter distances in the LT phase imply higher force
constants. Assuming parabolic potential energy curves, the
former will lead to a smaller activation energy due to the
proximity of the potential wells, whereas the later will increase
the barrier due to the higher curvature of the wells. In certain
circumstances, the two effects might thus just cancel each other.

5. Conclusions

We have studied the charge transport in valence-tautomeric
RbxMn[Fe(CN)6]y · zH2O samples with different stoichiometries.
The large bistability domain allowed us to investigate the charge
transport in the two valence-tautomeric phases in strictly
identical experimental conditions. The frequency-dependent
conductivity obeys time-temperature superposition (scaling
law) typical to disordered solids. The dc conductivity shows
Arrhenius behavior at high temperatures. A dipole relaxation
process displaying the same thermal activation energy as the
conductivity has also been observed. The overall experimental
results were well-reproduced by the equation σdc ) (nce2a2/
6kBT)νp. These characteristics imply a small polaron hopping
mechanism of the charge transport, which we assigned, from
the sign of the Seebeck coefficient, to the intervalence electron
transfer Mn2+-NC-Fe3+ T Mn3+-NC-Fe2+.

The valence-tautomeric phase transition is clearly displayed
in the thermal hysteresis of the electrical properties. However,
at low temperatures, a crossover occurs in the conductivity
mechanism from an Arrhenius-type to a variable activation
energy behavior, leading to a strange “double-loop” shape of
the hysteresis loop. This crossover is typical of small polaron
hopping phenomena, and from the investigation of samples that
do not display phase transition, we could unambiguously
conclude that the two phenomena (the valence-tautomeric phase
transition and the crossover in the conductivity mechanism) are
independent and occur in the same temperature range in certain
samples only by coincidence. On the other hand, the charge
transfer phase transition obviously modulates the conductivity,
and therefore, the conductivity data reflect both phenomena.
Actually, the phase transition does not lead to a modification
of the transport and dielectric relaxation mechanisms, but it does
modify the conductivity and the relaxation rate. Surprisingly,
the activation energy of the conductivity was fairly similar in



the two phases. On the other hand, the charge transfer rate and,
as a consequence, the conductivity, as well, are higher in the
LT phase. This difference is clearly displayed in the preexpo-
nential factor of the hopping frequency, which correlates well,
at least qualitatively, with the fact that the HT f LT phase
transition involves a strong stiffening of the lattice.

Finally, let us note that it might be possible to determine
intervalence electron transfer rates in these compounds using
other techniques (muon spin relaxation, Mössbauer spectros-
copy, optical absorption, etc.). A comparison of such data with
charge transfer rates determined from complex conductivity
measurements is a very interesting perspective of the present
work.
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