14 research outputs found

    Small Heat Shock Protein αA-Crystallin Prevents Photoreceptor Degeneration in Experimental Autoimmune Uveitis

    Get PDF
    The small heat shock protein, αA-crystallin null (αA−/−) mice are known to be more prone to retinal degeneration than the wild type mice in Experimental Autoimmune Uveoretinitis (EAU). In this report we demonstrate that intravenous administration of αA preserves retinal architecture and prevents photoreceptor damage in EAU. Interestingly, only αA and not αB-crystallin (αB), a closely related small heat shock protein works, pointing to molecular specificity in the observed retinal protection. The possible involvement of αA in retinal protection through immune modulation is corroborated by adaptive transfer experiments, (employing αA−/− and wild type mice with EAU as donors and Rag2−/− as the recipient mice), which indicate that αA protects against the autoimmune challenge by modulating the systemic B and T cell immunity. We show that αA administration causes marked reduction in Th1 cytokines (TNF-α, IL-12 and IFN-γ), both in the retina and in the spleen; notably, IL-17 was only reduced in the retina suggesting local intervention. Importantly, expression of Toll-like receptors and their associated adaptors is also inhibited suggesting that αA protection, against photoreceptor loss in EAU, is associated with systemic suppression of both the adaptive and innate immune responses

    IL-6 blockade in the management of non-infectious uveitis

    No full text
    Several pathogenetic studies have paved the way for a newer more rational therapeutic approach to non-infectious uveitis, and treatment of different forms of immune-driven uveitis has drastically evolved in recent years after the advent of biotechnological drugs. Tumor necrosis factor-α targeted therapies, the first-line recommended biologics in uveitis, have certainly led to remarkable results in patients with non-infectious uveitis. Nevertheless, the decision-making process turns out to be extremely difficult in anti-tumor necrosis factor or multidrug-resistant cases. Interleukin (IL)-6 holds a critical role in the pathogenic pathways of uveitis, due to its extended and protean range of effects. On this background, manipulation of IL-6 inflammatory cascade has unraveled encouraging outcomes. For instance, rising evidence has been achieved regarding the successful use of tocilizumab, the humanized monoclonal antibody targeted against the IL-6 receptor, in treating uveitis related to juvenile idiopathic arthritis or Behçet’s disease. Similar findings have also been reported for uveitis associated with systemic disorders, such as rheumatoid arthritis or multicentric Castleman disease, but also for idiopathic uveitis, the rare birdshot chorioretinopathy, and even in cases complicated by macular edema. This work provides a digest of all current experiences and evidences concerning IL-6 blockade, as suggested by the medical literature, proving its potential role in the management of non-infectious uveitis
    corecore