178 research outputs found

    The Dwarf Nova Outbursts of Nova Her 1960 (=V446 Her)

    Get PDF
    V446 Her is the best example of an old nova which has developed dwarf nova eruptions in the post-nova state. We report on observed properties of the long-term light curve of V446 Her, using photometry over 19 years. Yearly averages of the outburst magnitudes shows a decline of ~0.013 mag/yr, consistent with the decline of other post-novae that do not have dwarf nova outbursts. Previous suggestions of bimodal distributions of the amplitudes and widths of the outbursts are confirmed. The outbursts occur at a mean spacing of 18 days but the range of spacings is large (13-30 days). From simulations of dwarf nova outbursts it has been predicted that the outburst spacing in V446 Her will increase as M-dot from the red dwarf companion slowly falls following the nova; however the large intrinsic scatter in the spacings serves to hide any evidence of this effect. We do find a systematic change in the outburst pattern in which the brighter, wider type of outbursts disappeared after late 2003, and this phenomenon is suggested to be due to falling M-dot following the nova.Comment: To appear at the Astronomical Journal; 7 pages, 1 table, 11 figure

    The gamma-ray spectrum of Centaurus A: A high-resolution observation between 70 keV and 8 MeV

    Get PDF
    The NASA/Goddard Space Flight Center Low Energy Gamma ray Spectrometer (LEGS) observed the nearby active nucleus galaxy Centaurus A (NGC 5128) during a balloon flight on 1981 November 19. There is no evidence of a break in the spectrum or of any line features. The 1.6 MeV limit is a factor of 8 lower than the 1974 line flux, indicating that, if the 1974 feature was real, and, if it was narrow, then the line intensity decreased significantly between 1974 and 1981. The lack of observed annihilation radiation from Cen A, combined with the temporal variations that are seen in the X-ray and gamma-ray intensities, constrain the size of the emission region to be between 10 to the 13th power and 5 x 10 to the 17th power cm

    SHORTCUT METHOD OF SOLUTION OF GEODESIC EQUATIONS FOR SCHWARZSCHILD BLACK HOLE

    Get PDF
    It is shown how the use of the Kerr-Schild coordinate system can greatly simplify the formulation of the geodesic equation of the Schwarzschild solution. An application of this formulation to the numerical computation of the aspect of a non-rotating black hole is presented. The generalization to the case of the Kerr solution is presented too.Comment: 11 pages, 2 PostScript figures (available as uuencoded compressed tar file), uses epsfig.tex). Accepted on February 1995 for publication in Classical and Quantum Gravit

    Variability in the Thermal Emission from Accreting Neutron Star Transients

    Full text link
    The composition of the outer 100 m of a neutron star sets the heat flux that flows outwards from the core. For an accreting neutron star in an X-ray transient, the thermal quiescent flux depends sensitively on the amount of hydrogen and helium remaining on the surface after an accretion outburst and on the composition of the underlying ashes of previous H/He burning. Because H/He has a higher thermal conductivity, a larger mass of H/He implies a shallower thermal gradient through the low density envelope and hence a higher effective temperature for a given core temperature. The mass of residual H and He varies from outburst to outburst, so the thermal quiescent flux is variable even though the core temperature is constant for timescales < 10 000 yr. Heavy elements settle from a H/He envelope in a few hours; we therefore model the quiescent envelope as two distinct layers, H/He over heavier elements, and treat the mass of H/He as a free parameter. We find that the emergent thermal quiescent flux can vary by a factor of 2 to 3 between different quiescent epochs. The variation is more pronounced at lower interior temperatures, making systems with low quiescent luminosities and frequent outbursts, such as SAX J1808.4-3658, ideal candidates from which to observe this effect. We compute, for different ash compositions, the interior temperatures of Cen X-4, Aql X-1, and SAX J1808.4-3658. In the case of Aql X-1, the inferred high interior temperature suggests that neutrino cooling contributes to the neutron star's thermal balance.Comment: 14 pages, 5 figures, uses emulateapj5 and psnfss fonts. To be published in The Astrophysical Journa

    The Mini AGN at the Center of the Elliptical Galaxy NGC 4552 with HST

    Get PDF
    The complex phenomenology shown by the UV-bright, variable spike first detected with the Hubble Space Telescope (HST) at the center of the otherwise normal galaxy NGC 4552 is further investigated with both HST imaging (FOC) and spectroscopy (FOS). HST/FOC images taken in 1991, 1993, and 1996 in the near UV have been analyzed in a homogeneous fashion, showing that the central spike has brightened by a factor ~4.5 between 1991 and 1993, and has decreased its luminosity by a factor ~2.0 between 1993 and 1996. FOS spectroscopy extending from the near UV to the red side of the optical spectrum reveals a strong UV continuum over the spectrum of the underlying galaxy, along with several emission lines in both the UV and the optical ranges. In spite of the low luminosity of the UV continuum of the spike (~3*10^5 Lsolar), the spike is definitely placed among AGNs by current diagnostics based on the emission line intensity ratios, being just on the borderline between Seyferts and LINERs. Line profiles are very broad, and both permitted and forbidden lines are best modelled with a combination of broad and narrow components, with FWHM of ~3000 km s^-1 and ~700 km s^-1, respectively. This evidence argues for the variable central spike being produced by a modest accretion event onto a central massive black hole (BH), with the accreted material having possibly being stripped from a a star in a close fly by with the BH. The 1996 broad Halpha luminosity of this mini-AGN is ~5.6*10^37 erg s^-1, about a factor of two less than that of the nucleus of NGC 4395, heretofore considered to be the faintest known AGN.Comment: 40 pages, LaTeX, with 12 PostScript figures. Accepted for publication in the Astrophysical Journa

    ASCA Observations of the Jet Source XTE J1748-288

    Full text link
    XTE J1748-288 is a new X-ray transient with a one-sided radio jet. It was observed with ASCA on 1998/09/06 and 1998/09/26, 100 days after the onset of the radio-X-ray outburst. The spectra were fitted with an attenuated power-law model, and the 2-6-keV flux was 4.6 * 10^{-11} erg s^{-1} cm^{-2} and 2.2 * 10^{-12} on 09/06 and 09/26, respectively. The light curve showed that the steady exponential decay with an e-folding time of 14 days lasted over 100 days and 4 orders of magnitude from the peak of the outburst. The celestial region including the source had been observed with ASCA on 1993/10/01 and 1994/09/22, years before the discovery. In those period, the flux was < 10^{-13} erg s^{-1} cm^{-2}, below ASCA's detection limit. The jet blob colliding to the environmental matter was supposedly not the X-ray source, although the emission mechanism has not been determined. A possible detection of a K line from highly ionized iron is discussed.Comment: 11 pages, 4 figures, submitted to ApJL. Fig2 is replaced with correct on

    A 150MG magnetic white dwarf in the cataclysmic variable RX J1554.2+2721

    Full text link
    We report the detection of Zeeman-split Lalpha absorption pi and sigma+ lines in the far-ultraviolet Hubble Space Telescope/Space Telescope Imaging Spectrograph spectrum of the magnetic cataclysmic variable RX J1554.2+2721. Fitting the STIS data with magnetic white dwarf model spectra, we derive a field strength of B~144MG and an effective temperature of 17000K<Teff<23000K. This measurement makes RX J1554.2+2721 only the third cataclysmic variable containing a white dwarf with a field exceeding 100MG. Similar to the other high-field polar AR UMa, RX J1554.2+2721 is often found in a state of feeble mass transfer, which suggests that a considerable number of high-field polars may still remain undiscovered.Comment: 4 pages, accepted for ApJ Letter

    A Detection of an Anti-correlated Hard X-ray Lag in AM Herculis

    Get PDF
    Context {Earlier cross-correlation studies for AM Her were performed in various energy range from optical to X-ray and suggested that it mostly shows a high level of correlation but on occasion it shows a low level of correlation or uncorrelation.} Aims {To investigate the degree of correlation between soft (2-4 keV) and hard (9-20 keV) X-rays, we perform the cross-correlation study of the X-ray data sets of AM Her obtained with {\it RXTE}.} Methods {We cross-correlate the background-subtracted soft and hard X-ray light curves using the XRONOS program crosscor and fit a model to the obtained cross-correlation functions.} Results {We detect a hard X-ray lag of 192±33192\pm33 s in a specific section of energy-dependent light curve, where the soft X-ray (2-4 keV) intensity decreases but the hard X-ray (9-20 keV) intensity increases. From a spectral analysis, we find that the X-ray emission temperature increases during the anti-correlated intensity variation. In two other observations, the cross-correlation functions show a low level of correlation, which is consistent with the earlier results performed in a different energy range.} Conclusions {We report a detection of an anti-correlated hard X-ray lag of \sim190 s from the proto-type polar AM Her. The hard X-ray lag is detected for the first time in the given energy range, and it is the longest lag among those reported in magnetic cataclysmic variables. We discuss the implications of our findings regarding the origin of the hard X-ray lag and the anti-correlated intensity variation.}Comment: Accepted in A&A, 4 page

    Determination of the basic parameters of the dwarf nova EY Cygni

    Get PDF
    High-dispersion spectroscopy of EY Cyg obtained from data spanning twelve years show, for the first time, the radial velocity curves from both emission and absorption line systems, yielding semi-amplitudes K_{em}=24+/- 4 km s^-1 and K_{abs}=54+/- 2 km s^-1. The orbital period of this system is found to be 0.4593249(1)d. The masses of the stars, their mass ratio and their separation are found to be M_1 sin^3 i = 0.015+/-0.002 M_sun, M_2 sin^3 i = 0.007+/-0.002 M_sun, q = K_1/K_2 = M_2/M_1 = 0.44+/-0.02 and a sin i = 0.71+/-0.04 R_sun. We also found that the spectral type of the secondary star is around K0,consistent with an early determination by Kraft(1962). From the spectral type of the secondary star and simple comparisons with single main sequence stars, we conclude that the radius of the secondary star is about 30 per cent larger than a main sequence star of the same mass. We also present VRI CCD photometric observations, some of them simultaneous with the spectroscopic runs. The photometric data shows several light modulations, including a sinusoidal behaviour with twice the frequency of the orbital period, characteristic of the modulation coming from an elongated, irradiated secondary star. Low and high states during quiescence are also detected and discussed. From several constrains, we obtain tight limits for the inclination angle of the binary system between 13 and 15 degrees, with a best value of 14 degrees obtained from the sinusoidal light curve analysis. From the above results we derive masses M_1 = 1.10+/-0.09 M_sun, M_2 = 0.49+/-0.09 M_sun, and a binary separation a = 2.9+/- 0.1 R_sun.Comment: 14 pages, 14 figures, accepted for publication on A&

    The origin and fate of short-period low-mass black-hole binaries

    Get PDF
    We present results of a population synthesis study for semidetached short orbital period binaries which contain low-mass(<1.5 Msun) donors and black hole (>4 Msun) accretors. Evolution of these binaries is determined by nuclear evolution of the donors and/or orbital angular momentum loss due to magnetic braking by the stellar wind of the donors and gravitational wave radiation. According to our model, the estimated total number of this type of black-hole binaries in the Galaxy is about 10000. If the magnetic braking is described by the Verbunt & Zwaan formula, the model predicts around 3000 transient systems with periods >2 hours and around 300 luminous stable systems with periods between 3 and 8 hours. Several dozens of these bright systems should be above the RXTE ASM sensitivity limit. The absence of such systems implies that angular momentum losses are reduced by a factor more than 2 with respect to the Verbunt & Zwaan prescription. We show that it is unlikely that the transient behaviour of black-hole short-period X-ray binaries is explained by the evolved nature of the stellar companion. A substantial fraction of black-hole binaries with periods >3 hours could be faint with truncated, stable cold accretion discs as proposed by Menou et al. Most of the semidetached black-hole binaries are expected to have periods shorter than ~2 hours. Properties of such, still to be observed, very small mass-ratio (q<0.02) binaries are different from those of their longer period cousins.Comment: 13 pages, 6 figures, accepted for publication in A&
    corecore