77 research outputs found

    Towards high resolution mapping of 3-D mesoscale dynamics from observations

    Get PDF
    The MyOcean R&D project MESCLA (MEsoSCaLe dynamical Analysis through combined model, satellite and in situ data) was devoted to the high resolution 3-D retrieval of tracer and velocity fields in the oceans, based on the combination of in situ and satellite observations and quasi-geostrophic dynamical models. The retrieval techniques were also tested and compared with the output of a primitive equation model, with particular attention to the accuracy of the vertical velocity field as estimated through the <b><i>Q</i></b> vector formulation of the omega equation. The project focused on a test case, covering the region where the Gulf Stream separates from the US East Coast. This work demonstrated that innovative methods for the high resolution mapping of 3-D mesoscale dynamics from observations can be used to build the next generations of operational observation-based products

    High resolution 3-D temperature and salinity fields derived from in situ and satellite observations

    Get PDF
    This paper describes an observation-based approach that efficiently combines the main components of the global ocean observing system using statistical methods. Accurate but sparse in situ temperature and salinity profiles (mainly from Argo for the last 10 yr) are merged with the lower accuracy but high-resolution synthetic data derived from satellite altimeter and sea surface temperature observations to provide global 3-D temperature and salinity fields at high temporal and spatial resolution. The first step of the method consists in deriving synthetic temperature fields from altimeter and sea surface temperature observations, and salinity fields from altimeter observations, through multiple/simple linear regression methods. The second step of the method consists in combining the synthetic fields with in situ temperature and salinity profiles using an optimal interpolation method. Results show the revolutionary nature of the Argo observing system. Argo observations now allow a global description of the statistical relationships that exist between surface and subsurface fields needed for step 1 of the method, and can constrain the large-scale temperature and mainly salinity fields during step 2 of the method. Compared to the use of climatological estimates, results indicate that up to 50% of the variance of the temperature fields can be reconstructed from altimeter and sea surface temperature observations and a statistical method. For salinity, only about 20 to 30% of the signal can be reconstructed from altimeter observations, making the in situ observing system essential for salinity estimates. The in situ observations (step 2 of the method) further reduce the differences between the gridded products and the observations by up to 20% for the temperature field in the mixed layer, and the main contribution is for salinity and the near surface layer with an improvement up to 30%. Compared to estimates derived using in situ observations only, the merged fields provide a better reconstruction of the high resolution temperature and salinity fields. This also holds for the large-scale and low-frequency fields thanks to a better reduction of the aliasing due to the mesoscale variability. Contribution of the merged fields is then illustrated to describe qualitatively the temperature variability patterns for the period from 1993 to 2009

    Sea level budget over 2003-2008: A reevaluation from GRACE space gravimetry, satellite altimetry and Argo

    Get PDF
    0921-8181From the IPCC 4th Assessment Report published in 2007, ocean thermal expansion contributed by similar to 50% to the 3.1 mm/yr observed global mean sea level rise during the 1993-2003 decade, the remaining rate of rise being essentially explained by shrinking of land ice. Recently published results suggest that since about 2003, ocean thermal expansion change, based on the newly deployed Argo system, is showing a plateau while sea level is still rising, although at a reduced rate (similar to 2.5 mm/yr). Using space gravimetry observations from GRACE, we show that recent years sea level rise can be mostly explained by an increase of the mass of the oceans. Estimating GRACE-based ice sheet mass balance and using published estimates for glaciers melting, we further show that ocean mass increase since 2003 results by about half from an enhanced contribution of the polar ice sheets - compared to the previous decade - and half from mountain glaciers melting. Taking also into account the small GRACE-based contribution from continental waters (<0.2 mm/yr), we find a total ocean mass contribution of similar to 2 mm/yr over 2003-2008. Such a value represents similar to 80% of the altimetry-based rate of sea level rise over that period. We next estimate the steric sea level (i.e., ocean thermal expansion plus salinity effects) contribution from: (1) the difference between altimetry-based sea level and ocean mass change and (2) Argo data. Inferred steric sea level rate from (1) (similar to 0.3 mm/yr over 2003-2008) agrees well with the Argo-based value also estimated here (0.37 mm/yr over 2004-2008). Furthermore, the sea level budget approach presented in this study allows us to constrain independent estimates of the Glacial Isostatic Adjustment (GIA) correction applied to GRACE-based ocean and ice sheet mass changes, as well as of glaciers melting. Values for the CIA correction and glacier contribution needed to close the sea level budget and explain GRACE-based mass estimates over the recent years agree well with totally independent determinations. (C) 2008 Elsevier B.V. All rights reserved

    The Ocean Reanalyses Intercom parison Project (ORA - IP)

    Get PDF
    Uncertainty in ocean analysis methods and deficiencies in the observing system are major obstacles for the reliable reconstruction of the past ocean climate. The variety of existing ocean reanalyses is exploited in a multi-reanalysis ensemble to improve the ocean state estimation and to gauge uncertainty levels. The ensemble-based analysis of signal-to-noise ratio allows the identification of ocean characteristics for which the estimation is robust (such as tropical mixed-layer-depth,upper ocean heat content), and where large uncertainty exists (deep ocean, Southern Ocean, sea-ice thickness, salinity), providing guidance for future enhancement of the observing and data assimilation systems
    • 

    corecore