11 research outputs found

    Impact of early enteral versus parenteral nutrition on mortality in patients requiring mechanical ventilation and catecholamines: study protocol for a randomized controlled trial (NUTRIREA-2)

    Get PDF
    BACKGROUND: Nutritional support is crucial to the management of patients receiving invasive mechanical ventilation (IMV) and the most commonly prescribed treatment in intensive care units (ICUs). International guidelines consistently indicate that enteral nutrition (EN) should be preferred over parenteral nutrition (PN) whenever possible and started as early as possible. However, no adequately designed study has evaluated whether a specific nutritional modality is associated with decreased mortality. The primary goal of this trial is to assess the hypothesis that early first-line EN, as compared to early first-line PN, decreases day 28 all-cause mortality in patients receiving IMV and vasoactive drugs for shock. METHODS/DESIGN: The NUTRIREA-2 study is a multicenter, open-label, parallel-group, randomized controlled trial comparing early PN versus early EN in critically ill patients requiring IMV for an expected duration of at least 48 hours, combined with vasoactive drugs, for shock. Patients will be allocated at random to first-line PN for at least 72 hours or to first-line EN. In both groups, nutritional support will be started within 24 hours after IMV initiation. Calorie targets will be 20 to 25 kcal/kg/day during the first week, then 25 to 30 kcal/kg/day thereafter. Patients receiving PN may be switched to EN after at least 72 hours in the event of shock resolution (no vasoactive drugs for 24 consecutive hours and arterial lactic acid level below 2 mmol/L). On day 7, all patients receiving PN and having no contraindications to EN will be switched to EN. In both groups, supplemental PN may be added to EN after day 7 in patients with persistent intolerance to EN and inadequate calorie intake. We plan to recruit 2,854 patients at 44 participating ICUs. DISCUSSION: The NUTRIREA-2 study is the first large randomized controlled trial designed to assess the hypothesis that early EN improves survival compared to early PN in ICU patients. Enrollment started on 22 March 2013 and is expected to end in November 2015. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT01802099 (registered 27 February 2013)

    AusGeochem: An Open Platform for Geochemical Data Preservation, Dissemination and Synthesis

    Get PDF
    To promote a more efficient and transparent geochemistry data ecosystem, a consortium of Australian university research laboratories called the AuScope Geochemistry Network assembled to build a collaborative platform for the express purpose of preserving, disseminating and collating geochronology and isotopic data. In partnership with geoscience-data-solutions company Lithodat Pty Ltd, the open, cloud-based AusGeochem platform (https://ausgeochem.auscope.org.au) was developed to simultaneously serve as a geosample registry, a geochemical data repository and a data analysis tool. Informed by method-specific groups of geochemistry experts and established international data reporting practices, community-agreed database schemas were developed for rock and mineral geosample metadata and secondary ion mass spectrometry U-Pb analysis, with additional models for laser ablation-inductively coupled-massspectrometry U-Pb and Lu-Hf, Ar-Ar, fission-track and (U-Th-Sm)/He under development. Collectively, the AusGeochem platform provides the geochemistry community with a new, dynamic resource to help facilitate FAIR (Findable, Accessible,Interoperable, Reusable) data management, streamline data dissemination and advanced quantitative investigations of Earth system processes. By systematically archiving detailed geochemical (meta-)data in structured schemas, intractably large datasets comprising thousands of analyses produced by numerous laboratories can be readily interrogated in novel and powerful ways. These include rapid derivation of inter-data relationships, facilitating on-the-fly data compilation,analysis and visualisation.Samuel C.Boone, Hayden Dalton, Alexander Prent, Fabian Kohlmann, Moritz Theile, Yoann Greau, Guillaume Florin, Wayne Noble, Sally-Ann Hodgekiss, Bryant Ware, David Phillips, Barry Kohn, Suzanne O, Reilly, Andrew Gleadow, Brent McInnes, and Tim Rawlin

    The affinity of Archean crust on the Yilgarn-Albany-Fraser Orogen boundary: Implications for gold mineralisation in the Tropicana Zone

    No full text
    Craton margins can be subject to a wide array of gold genesis and redistribution processes, although high-grade terrains on craton margins are frequently viewed as less prospective than lower-grade counterparts. In contrast to this, the high-grade Tropicana Zone, a newly defined Archean crustal component on the eastern margin of the Yilgarn Craton within the Albany–Fraser Orogen (AFO), contains a significant Proterozoic gold deposit. This deposit and zone comprise mid-amphibolite to granulite-facies gneissic rocks with evidence of partial melting and granite injection. The Tropicana Zone contains significant low-Si, LILE-enriched, granites classed as sanukitoids. Along with the distinctive compositions, the rarity of these rocks within any Archean craton suggests that the granitoid protoliths represent a single suite, emplaced during one event.Due to the intense granulite-facies overprinting of the Tropicana Zone rocks, determination of the magmatic protolith age for these sanukitoids is challenging. Nonetheless, the best age estimate for magmatism is 2692 ± 16 Ma, based on the youngest zircons preserving textural evidence of growth within a viscous silicate melt. This age is older than compositionally similar magmatism found within the Yilgarn Craton, although a sanukitoid in the Northern Foreland of the AFO has a similar age. Furthermore, the granulite-facies metamorphic zircon growth in the Tropicana Zone at 2718–2554 Ma was prolonged compared to that in the Yilgarn Craton. Nonetheless, the Hf isotopic signature of the Tropicana Zone zircon shares strong similarity to that from the Eastern Goldfields Superterrane of the Yilgarn Craton. This implies that the Tropicana Zone reflects a deeper crustal level of the Yilgarn Craton, exhumed and thrust NW an unknown distance over the craton edge. In addition, we observe that the granulite-facies zircons have a less radiogenic Hf-isotope signature than the preserved pre-metamorphic zircon cores. Based on correlations with alpha dose, U and Th content and 176Hf/177Hf we suggest this reflects the preferential destruction and release of unradiogenic Hf from inherited zircon whereas the protolith sanukitoid zircon, with lower U and Th content, was more resistant to mobilisation during high-grade metamorphism. We note this situation may be a more general response of the Hf isotopic system, in which zircon grown in a more mafic melt is less likely to contribute to the metamorphic Hf reservoir than its felsic counterpart.Juvenile granitic veins dated at c. 1780 Ma intruded into the Tropicana Zone indicate that the Tropicana Zone was structurally emplaced at or before c. 1780 Ma, given similar Proterozoic magmatic events are well documented from (para)autochthonous adjacent units. Re–Os dating of pyrite coeval with one generation of gold in these rocks indicates model ages of c. 2100 Ma, supportive of a Palaeoproterozoic age of mineralisation. This mineralisation event is distinct from major Proterozoic tectonothermal events elsewhere in the AFO. Sanukitoid magmas are well-known for gold fertility and were likely the original source of gold in the Tropicana Zone, which was subsequently concentrated into brittle structures during several episodes. Gold mineralisation post-dated peak metamorphic conditions and is significantly younger than gold mineralisation within other parts of the adjoining Yilgarn Craton
    corecore