103 research outputs found

    Interconnected impacts of water resource management and climate change on microplastic pollution and riverine biocoenosis: A review by freshwater ecologists

    Get PDF
    The relationship between river hydrology and microplastic (MP) pollution is complex: increased discharge does not always mobilize more MPs, but floods can effectively flush out MPs from river catchments. Climate change and water resource management further influence MP pollution and its fate by altering river hydro-sedimentary regimes. This review investigates the interconnected impacts of these factors from a comprehensive perspective, focusing on how they affect MP concentration in freshwater ecosystems, particularly in regulated rivers and associated reservoirs. Our review reveals a scarcity of studies that jointly analyze the interrelated issues of MP pollution, water resource management, and climate change. Key findings indicate that variations in river discharge significantly influence MP mobilization, mainly depending on catchment land use, channel morphology, position within the catchment, and MP characteristics. Reservoirs function as both sinks and sources of MPs, underscoring their complex role in MP dynamics and the need for sustainable sediment management strategies. The increasing frequency of extreme weather events, driven by climate change, along with prolonged droughts intensified by water management practices, exacerbates MP pollution. These changes contribute to the local concentration of MPs, posing direct physical threats to aquatic organisms, particularly benthic species, through pollution and habitat alterations. Current policies on plastic pollution, water resources and climate change are underdeveloped, as these topics have been treated separately so far. In conclusion, this review provides perspectives on future research and policy directions to address challenges posed by MPs and to preserve rivers against multiple stressors

    Utilization of nitrate abolishes the "Custers effect" in Dekkera bruxellensis and determines a different pattern of fermentation products

    Get PDF
    Nitrate is one of the most abundant nitrogen sources in nature. Several yeast species have been shown to be able to assimilate nitrate and nitrite, but the metabolic pathway has been studied in very few of them. Dekkera bruxellensis can use nitrate as sole nitrogen source and this metabolic characteristic can render D. bruxellensis able to overcome S. cerevisiae populations in industrial bioethanol fermentations. In order to better characterize how nitrate utilization affects carbon metabolism and the yields of the fermentation products, we investigated this trait in defined media under well-controlled aerobic and anaerobic conditions. Our experiments showed that in D. bruxellensis, utilization of nitrate determines a different pattern of fermentation products. Acetic acid, instead of ethanol, became in fact the main product of glucose metabolism under aerobic conditions. We have also demonstrated that under anaerobic conditions, nitrate assimilation abolishes the "Custers effect", in this way improving its fermentative metabolism. This can offer a new strategy, besides aeration, to sustain growth and ethanol production for the employment of this yeast in industrial processes

    Engineering cytoplasmic acetyl-CoA synthesis decouples lipid production from nitrogen starvation in the oleaginous yeast Rhodosporidium azoricum

    Get PDF
    Background: Oleaginous yeasts are able to accumulate very high levels of neutral lipids especially under condition of excess of carbon and nitrogen limitation (medium with high C/N ratio). This makes necessary the use of two-steps processes in order to achieve high level of biomass and lipid. To simplify the process, the decoupling of lipid synthesis from nitrogen starvation, by establishing a cytosolic acetyl-CoA formation pathway alternative to the one catalysed by ATP-citrate lyase, can be useful. Results: In this work, we introduced a new cytoplasmic route for acetyl-CoA (AcCoA) formation in Rhodosporidium azoricum by overexpressing genes encoding for homologous phosphoketolase (Xfpk) and heterologous phosphotransacetylase (Pta). The engineered strain PTAPK4 exhibits higher lipid content and produces higher lipid concentration than the wild type strain when it was cultivated in media containing different C/N ratios. In a bioreactor process performed on glucose/xylose mixture, to simulate an industrial process for lipid production from lignocellulosic materials, we obtained an increase of 89% in final lipid concentration by the engineered strain in comparison to the wild type. This indicates that the transformed strain can produce higher cellular biomass with a high lipid content than the wild type. The transformed strain furthermore evidenced the advantage over the wild type in performing this process, being the lipid yields 0.13 and 0.05, respectively. Conclusion: Our results show that the overexpression of homologous Xfpk and heterologous Pta activities in R. azoricum creates a new cytosolic AcCoA supply that decouples lipid production from nitrogen starvation. This metabolic modification allows improving lipid production in cultural conditions that can be suitable for the development of industrial bioprocesses using lignocellulosic hydrolysates

    Bonding to wet or dry deproteinized dentin: microtensile bond strength and confocal laser micromorphology analysis

    Get PDF
    Aim: To investigate the influence of deproteinization and moisture condition (wet vs. dry) on the bond strength and micromorphology of resin-dentin bonding interfaces. Methods: Dentin surfaces were etched with 37% phosphoric acid for 15 s and rinsed with water. Four groups (n = 10) were tested: WET: dentin was left visibly moist; DRY: dentin was dried with compressed air; WET-D: dentin was deproteinized for 60 s using 10% NaOCl solution and left moist; DRY-D: dentin was deproteinized and dried. Prime&Bond 2.1 adhesive was applied and the teeth were restored with composite resin. Microtensile test was carried out after 24 h, and failure modes classified under magnification. Data were subjected to two-way ANOVA and Tukey’s test (P < 0.05). The bonding micromorphology was analyzed by confocal laser scanning microscopy. Results: The group DRY showed significantly lower bond strength (P < 0.05) than the other groups, which were similar to each other (P > 0.05). Adhesive failures were predominant. Analysis of micromorphology showed formation of a collagen-resin hybrid layer only for the non-deproteinized groups. Adhesive penetration into the dentinal tubules was deeper for the DRY-D compared to the WETD group. Conclusion: The bond strength was not dependent on the moisture condition and a more homogeneous hybridization was obtained when dentin was deproteinize

    Cold exposure affects carbohydrates and lipid metabolism, and induces Hog1p phosphorylation in Dekkera bruxellensis strain CBS 2499

    Get PDF
    Dekkera bruxellensis is a yeast known to affect the quality of wine and beer. This species, due to its high ethanol and acid tolerance, has been reported also to compete with Saccharomyces cerevisiae in distilleries producing fuel ethanol. In order to understand how this species responds when exposed to low temperatures, some mechanisms like synthesis and accumulation of intracellular metabolites, changes in lipid composition and activation of the HOG-MAPK pathway were investigated in the genome sequenced strain CBS 2499. We show that cold stress caused intracellular accumulation of glycogen, but did not induce accumulation of trehalose and glycerol. The cellular fatty acid composition changed after the temperature downshift, and a significant increase of palmitoleic acid was observed. RT-PCR analysis revealed that OLE1 encoding for \u3949-fatty acid desaturase was up-regulated, whereas TPS1 and INO1 didn't show changes in their expression. In D. bruxellensis Hog1p was activated by phosphorylation, as described in S. cerevisiae, highlighting a conserved role of the HOG-MAP kinase signaling pathway in cold stress response

    A new chemoenzymatic approach to the synthesis of Latanoprost and Bimatoprost

    Get PDF
    Bimatoprost (1) and Latanoprost (2) are prostaglandin analogues widely used for glaucoma treatment. We have developed a new chemoenzymatic synthesis for 1 and 2, which utilizes a highly stereoselective sequence of biotransformations catalyzed by enzymes belonging to a single microorganism (the yeast Pichia anomala). The original synthesis, starting from (-)-Corey lactone benzoate (3aR,4R,5R,6aS)-3, was modified by replacing three synthetic steps (Cdouble bond, longC reduction, stereoselective Cdouble bond, longO reduction and hydrolysis/deprotection of the benzoate ester) with a one-pot, three-enzymes reaction. The overall biotransformation gave good yields and it was highly stereoselective; noteworthy, by engineering the reaction medium, Cdouble bond, longC reduction could be modulated so that unsaturated (3aR,4R,5R,6aS,3\u2032S)-6 or saturated intermediate (3aR,4R,5R,6aS,3\u2032R)-7 could be preferentially obtained. \ua9 2014 Elsevier B.V. All rights reserved

    De-Novo Assembly and Analysis of the Heterozygous Triploid Genome of the Wine Spoilage Yeast Dekkera bruxellensis AWRI1499

    Get PDF
    Despite its industrial importance, the yeast species Dekkera (Brettanomyces) bruxellensis has remained poorly understood at the genetic level. In this study we describe whole genome sequencing and analysis for a prevalent wine spoilage strain, AWRI1499. The 12.7 Mb assembly, consisting of 324 contigs in 99 scaffolds (super-contigs) at 26-fold coverage, exhibits a relatively high density of single nucleotide polymorphisms (SNPs). Haplotype sampling for 1.2% of open reading frames suggested that the D. bruxellensis AWRI1499 genome is comprised of a moderately heterozygous diploid genome, in combination with a divergent haploid genome. Gene content analysis revealed enrichment in membrane proteins, particularly transporters, along with oxidoreductase enzymes. Availability of this assembly and annotation provides a resource for further investigation of genomic organization in this species, and functional characterization of genes that may confer important phenotypic traits
    corecore