625 research outputs found

    A Simple Scaling Analysis of X-ray Emission and Absorption in Hot-Star Winds

    Get PDF
    We present a simple analysis of X-ray emission and absorption for hot-star winds, designed to explore the natural scalings of the observed X-ray luminosity with wind and sstellar properties. We show that an exospheric approximation, in which all of the emission above the optical depth unity radius escapes the wind, reproduces very well the detailed expression for radiation transport through a spherically symmetric wind. Using this approximation we find that the X-ray luminosity LxL_x scales naturally with the wind density parameter \Mdot/\vinf, obtaining L_x \sim (\Mdot/\vinf)^2 for optically thin winds, and L_x \sim (\Mdot/\vinf)^{1+s} for optically thick winds with an X-ray filling factor that varies in radius as frsf \sim r^s. These scalings with wind density contrast with the commonly inferred empirical scalings of X-ray luminosity LxL_x with bolometric luminosity LBL_B. The empirically derived linear scaling of LxLBL_x \sim L_B for thick winds can however be reproduced, through a delicate cancellation of emission and absorption, if one assumes modest radial fall-off in the X-ray filling factor (s0.25s \approx -0.25 or s0.4s \approx -0.4, depending on details of the secondary scaling of wind density with luminosity). We also explore the nature of the X-ray spectral energy distribution in the context of this model, and find that the spectrum is divided into a soft, optically thick part and a hard, optically thin part. Finally, we conclude that the energy-dependent emissivity must have a high-energy cut-off, corresponding to the maximum shock energy, in order to reproduce the general trends seen in X-ray spectral energy distributions of hot stars.Comment: 16 pages, 2 figures, requiress aaspp4.sty, accepted by Astrophysical Journal, to appear in the Aug 10, 1999 issue. Several minor changes have been made at the suggestion of the referee. We have added an appendix in which we consider winds with beta-velocity laws, rather than simply constant velocitie

    The Ionized Stellar Wind in Vela X-1 During Eclipse

    Get PDF
    We present a first analysis of a high resolution X-ray spectrum of the ionized stellar wind of Vela X-1 during eclipse. The data were obtained with the High Energy Transmission Grating Spectrometer onboard the Chandra X-ray Observatory. The spectrum is resolved into emission lines with fluxes between 0.02 and 1.04x10^4 ph/cm^2/s. We identify lines from a variety of charge states, including fluorescence lines from cold material, a warm photoionized wind. We can exclude signatures from collisionally ionized plasmas. For the first time we identify fluorescence lines from L-shell ions from lower Z elements. We also detect radiative recombination continua from a kT = 10 eV (1.2 x 10^5 K) photoionized optically thin gas. The fluorescence line fluxes infer the existence of optically thick and clumped matter within or outside the warm photoionized plasma.Comment: 4 pages, 2 figures, accepted by ApJ letter

    X-ray Line Emission from the Hot Stellar Wind of theta 1 Ori C

    Full text link
    We present a first emission line analysis of a high resolution X-ray spectrum of the stellar wind of theta 1 Ori C obtained with the High Energy Transmission grating Spectrometer onboard the Chandra X-ray Observatory. The spectra are resolved into a large number of emission lines from H- and He-like O, Ne, Mg, Si, S, Ar and Fe ions. The He-like Fe XXV and Li-like Fe XXIV appear quite strong indicating very hot emitting regions. From H/He flux ratios, as well as from Fe He/Li emission measure ratios we deduce temperatures ranging from 0.5 to 6.1 x 10^7 K. The He-triplets are very sensitive to density as well. At these temperatures the relative strengths of the intercombination and forbidden lines indicate electron densities well above 10^12 cm^-3. The lines appear significantly broadened from which we deduce a mean velocity of 770 km/s with a spread between 400 and 2000 km/s. Along with results of the deduced emission measure we conclude that the X-ray emission could originate in dense and hot regions with a characteristic size of less then 4 x 10^10 cm.Comment: 4 pages, 3 figure

    Mass loss from inhomogeneous hot star winds II. Constraints from a combined optical/UV study

    Full text link
    Mass-loss rates currently in use for hot, massive stars have recently been seriously questioned, mainly because of the effects of wind clumping. We investigate the impact of clumping on diagnostic ultraviolet resonance and optical recombination lines. Optically thick clumps, a non-void interclump medium, and a non-monotonic velocity field are all accounted for in a single model. We used 2D and 3D stochastic and radiation-hydrodynamic (RH) wind models, constructed by assembling 1D snapshots in radially independent slices. To compute synthetic spectra, we developed and used detailed radiative transfer codes for both recombination lines (solving the "formal integral") and resonance lines (using a Monte-Carlo approach). In addition, we propose an analytic method to model these lines in clumpy winds, which does not rely on optically thin clumping. Results: Synthetic spectra calculated directly from current RH wind models of the line-driven instability are unable to in parallel reproduce strategic optical and ultraviolet lines for the Galactic O-supergiant LCep. Using our stochastic wind models, we obtain consistent fits essentially by increasing the clumping in the inner wind. A mass-loss rate is derived that is approximately two times lower than predicted by the line-driven wind theory, but much higher than the corresponding rate derived from spectra when assuming optically thin clumps. Our analytic formulation for line formation is used to demonstrate the potential impact of optically thick clumping in weak-winded stars and to confirm recent results that resonance doublets may be used as tracers of wind structure and optically thick clumping. (Abridged)Comment: 14 pages+1 Appendix, 8 figures, 3 tables. Accepted for publication in Astronomy and Astrophysics. One reference updated, minor typo in Appendix correcte

    The value based portfoliomanagement in response to REACh:a manual of different strategies for the chemical industry

    Full text link
    The registration, evaluation and authorisation of chemical substances in the context of the European regulation called REACh influence the profit of the chemical industry. If the chemical enterprises want to keep their competitiveness and the availability of products in the Europeanmarket they have to pursue a REACh-strategy. By using a value based portfoliomanagement they are able to analyse their portfolio, to identify profitable and non-profitable strategic business units (SBUs) and to find adequate strategies for each of them

    Optical Colors of Intracluster Light in the Virgo Cluster Core

    Full text link
    We continue our deep optical imaging survey of the Virgo cluster using the CWRU Burrell Schmidt telescope by presenting B-band surface photometry of the core of the Virgo cluster in order to study the cluster's intracluster light (ICL). We find ICL features down to mu_b ~ 29 mag sq. arcsec, confirming the results of Mihos et al. (2005), who saw a vast web of low-surface brightness streams, arcs, plumes, and diffuse light in the Virgo cluster core using V-band imaging. By combining these two data sets, we are able to measure the optical colors of many of the cluster's low-surface brightness features. While much of our imaging area is contaminated by galactic cirrus, the cluster core near the cD galaxy, M87, is unobscured. We trace the color profile of M87 out to over 2000 arcsec, and find a blueing trend with radius, continuing out to the largest radii. Moreover, we have measured the colors of several ICL features which extend beyond M87's outermost reaches and find that they have similar colors to the M87's halo itself, B-V ~ 0.8. The common colors of these features suggests that the extended outer envelopes of cD galaxies, such as M87, may be formed from similar streams, created by tidal interactions within the cluster, that have since dissolved into a smooth background in the cluster potential.Comment: 14 pages. Published in ApJ, September 201

    2D Simulations of the Line-Driven Instability in Hot-Star Winds: II. Approximations for the 2D Radiation Force

    Full text link
    We present initial attempts to include the multi-dimensional nature of radiation transport in hydrodynamical simulations of the small-scale structure that arises from the line-driven instability in hot-star winds. Compared to previous 1D or 2D models that assume a purely radial radiation force, we seek additionally to treat the lateral momentum and transport of diffuse line-radiation, initially here within a 2D context. A key incentive is to study the damping effect of the associated diffuse line-drag on the dynamical properties of the flow, focusing particularly on whether this might prevent lateral break-up of shell structures at scales near the lateral Sobolev angle of ca. 1o1^{\rm o}. We first explore nonlinear simulations that cast the lateral diffuse force in the simple, local form of a parallel viscosity. Second, to account for the lateral mixing of radiation associated with the radial driving, we next explore models in which the radial force is azimuthally smoothed over a chosen scale. Third, to account for both the lateral line-drag and the lateral mixing in a more self-consistent way, we explore further a method first proposed by Owocki (1999), which uses a restricted 3-ray approach that combines a radial ray with two oblique rays set to have an impact parameter p<Rp < R_{\ast} within the stellar core. From numerical simulations, we find that, compared to equivalent 1-ray simulations, the high-resolution 3-ray models show systematically a much higher lateral coherence.... (Full abstract in paper)Comment: Accepted by A&A, 12 pages, 7 figures, 3 only shown in version available at http://www.mpa-garching.mpg.de/~luc/2778.ps.g

    The Potential for a Blood Test for Scabies

    Get PDF
    Scabies, caused by the mite S. scabiei that burrows in the skin of humans, is a contagious skin disease that affects millions of people worldwide. It is a significant public health burden in economically disadvantaged populations, and outbreaks are common in nursing homes, daycare facilities, schools and workplaces in developed countries. It causes significant morbidity, and in chronic cases, associated bacterial infections can lead to renal and cardiac diseases. Scabies is very difficult to diagnose by the usual skin scrape test, and a presumptive diagnosis is often made based on clinical signs such as rash and itch that can mimic other skin disease. A sensitive and specific blood test to detect scabies-specific antibodies would allow a physician to quickly make a correct diagnosis. Our manuscript reports the antibody isotype profiles of the sera of two groups of patients with ordinary scabies (17 from the US and 74 from Brazil) and concludes that such a blood test should be based on circulating IgM type antibodies that do not also recognize antigens of the related and ubiquitous house dust mites. Both are important considerations for research for developing a blood test for the diagnosis of scabies

    Resonant tunneling in a schematic model

    Full text link
    Tunneling of an harmonically bound two-body system through an external Gaussian barrier is studied in a schematic model which allows for a better understanding of intricate quantum phenomena. The role of finite size and internal structure is investigated in a consistent treatment. The excitation of internal degrees of freedom gives rise to a peaked structure in the penetration factor. The model results indicate that for soft systems the adiabatic limit is not necessarily reached although often assumed in fusion of nuclei and in electron screening effects at astrophysical energies.Comment: 7 pages, 7 figure
    corecore