331 research outputs found

    NGC 2419, M92, and the Age Gradient in the Galactic Halo

    Get PDF
    The WFPC2 camera on HST has been used to obtain deep main sequence photometry of the low-metallicity ([Fe/H]=-2.14), outer-halo globular cluster NGC 2419. A differential fit of the NGC 2419 CMD to that of the similarly metal-poor \ standard cluster M92 shows that they have virtually identical principal sequences and thus the same age to well within 1 Gyr. Since other low-metallicity clusters throughout the Milky Way halo have this same age to within the 1-Gyr precision of the differential age technique, we conclude that the earliest star (or globular cluster) formation began at essentially the same time everywhere in the Galactic halo throughout a region now almost 200 kpc in diameter. Thus for the metal-poorest clusters in the halo there is no detectable age gradient with Galactocentric distance. To estimate the absolute age of NGC 2419 and M92, we fit newly computed isochrones transformed through model-atmosphere calculations to the (M_V,V-I) plane, with assumed distance scales that represent the range currently debated in the literature. Unconstrained isochrone fits give M_V(RR) = 0.55 \pm 0.06 and a resulting age of 14 to 15 Gyr. Incorporating the full effects of helium diffusion would further reduce this estimate by about 1 Gyr. A distance scale as bright as M_V(RR) = 0.15 for [Fe/H] = -2, as has recently been reported, would leave several serious problems which have no obvious solution in the context of current stellar models.Comment: 32 pages, aastex, 9 postscript figures; accepted for publication in AJ, September 1997. Also available by e-mail from [email protected]

    White Dwarfs in Globular Clusters: HST Observations of M4

    Get PDF
    Using WFPC2 on the Hubble Space Telescope, we have isolated a sample of 258 white dwarfs (WDs) in the Galactic globular cluster M4. Fields at three radial distances from the cluster center were observed and sizeable WD populations were found in all three. The location of these WDs in the color-magnitude diagram, their mean mass of 0.51(±0.03 \pm 0.03)M⊙_{\odot}, and their luminosity function confirm basic tenets of stellar evolution theory and support the results from current WD cooling theory. The WDs are used to extend the cluster main-sequence mass function upward to stars that have already completed their nuclear evolution. The WD/red dwarf binary frequency in M4 is investigated and found to be at most a few percent of all the main-sequence stars. The most ancient WDs found are about 9 Gyr old, a level which is set solely by the photometric limits of our data. Even though this is less than the age of M4, we discuss how these cooling WDs can eventually be used to check the turnoff ages of globular clusters and hence constrain the age of the Universe.Comment: 46 pages, latex, no figures included, figures available at ftp://ftp.astro.ubc.ca/pub/richer/wdfig.uu size 2.7Mb. To be published in the Astrophysical Journa

    Ontogenetic changes in skeletal muscle fiber type, fiber diameter and myoglobin concentration in the Northern elephant seal (Mirounga angustirostris)

    Get PDF
    © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Physiology 5 (2014): 217, doi:10.3389/fphys.2014.00217.Northern elephant seals (Mirounga angustirostris) (NES) are known to be deep, long-duration divers and to sustain long-repeated patterns of breath-hold, or apnea. Some phocid dives remain within the bounds of aerobic metabolism, accompanied by physiological responses inducing lung compression, bradycardia, and peripheral vasoconstriction. Current data suggest an absence of type IIb fibers in pinniped locomotory musculature. To date, no fiber type data exist for NES, a consummate deep diver. In this study, NES were biopsied in the wild. Ontogenetic changes in skeletal muscle were revealed through succinate dehydrogenase (SDH) based fiber typing. Results indicated a predominance of uniformly shaped, large type I fibers and elevated myoglobin (Mb) concentrations in the longissimus dorsi (LD) muscle of adults. No type II muscle fibers were detected in any adult sampled. This was in contrast to the juvenile animals that demonstrated type II myosin in Western Blot analysis, indicative of an ontogenetic change in skeletal muscle with maturation. These data support previous hypotheses that the absence of type II fibers indicates reliance on aerobic metabolism during dives, as well as a depressed metabolic rate and low energy locomotion. We also suggest that the lack of type IIb fibers (adults) may provide a protection against ischemia reperfusion (IR) injury in vasoconstricted peripheral skeletal muscle.Funding was provided by the Baylor University Faculty Research Investment Program (StephenJ.Trumble)

    Magnetar-like X-ray Bursts from an Anomalous X-ray Pulsar

    Get PDF
    Anomalous X-ray Pulsars (AXPs) are a class of rare X-ray pulsars whose energy source has been perplexing for some 20 years. Unlike other, better understood X-ray pulsars, AXPs cannot be powered by rotation or by accretion from a binary companion, hence the designation ``anomalous.'' AXP rotational and radiative properties are strikingly similar to those of another class of exotic objects, the Soft Gamma Repeaters (SGRs). However, the defining property of SGRs, namely their low-energy gamma-ray and X-ray bursts, have heretofore not been seen in AXPs. SGRs are thought to be ``magnetars,'' young neutron stars powered by the decay of an ultra-high magnetic field. The suggestion that AXPs are magnetars has been controversial. Here we report the discovery, from the direction of AXP 1E 1048-5937, of two X-ray bursts that have many properties similar to those of SGR bursts. These events imply a close relationship between AXPs and SGRs, with both being magnetars.Comment: 14 pages, 2 figures, accepted for publication in Nature. Note: The content of this paper is embargoed until 1900 hrs London time / 1400 US Eastern Time on Sept 1

    Bubbles in live-stranded dolphins

    Get PDF
    © The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Proceedings of the Royal Society B : Biological Sciences 279 (2012): 1396-1404, doi:10.1098/rspb.2011.1754.Bubbles in supersaturated tissues and blood occur in beaked whales stranded near sonar exercises, and post-mortem in dolphins bycaught at depth and then hauled to the surface. To evaluate live dolphins for bubbles, liver, kidneys, eyes and blubber–muscle interface of live-stranded and capture-release dolphins were scanned with B-mode ultrasound. Gas was identified in kidneys of 21 of 22 live-stranded dolphins and in the hepatic portal vasculature of 2 of 22. Nine then died or were euthanized and bubble presence corroborated by computer tomography and necropsy, 13 were released of which all but two did not re-strand. Bubbles were not detected in 20 live wild dolphins examined during health assessments in shallow water. Off-gassing of supersaturated blood and tissues was the most probable origin for the gas bubbles. In contrast to marine mammals repeatedly diving in the wild, stranded animals are unable to recompress by diving, and thus may retain bubbles. Since the majority of beached dolphins released did not re-strand it also suggests that minor bubble formation is tolerated and will not lead to clinically significant decompression sickness.Funding for this work was provided by the US Office of Naval Research Award no. N000140811220 and the International Fund for Animal Welfare

    Photometric redshifts for the CFHTLS T0004 Deep and Wide fields

    Get PDF
    We compute photometric redshifts based on the template-fitting method in the fourth public release of the Canada-France-Hawaii Telescope Legacy Survey. This unique multi-colour catalogue comprises u*,g',r',i',z' photometry in four deep fields of 1 deg2 each and 35 deg2 distributed over three Wide fields. Our photometric redshifts are calibrated with and compared to 16,983 high-quality spectroscopic redshifts from several surveys. We find a dispersion of 0.028 and an outlier rate of 3.5% in the Deep field at i'AB < 24 and a dispersion of 0.036 and an outlier rate of 2.8% in the Wide field at i'AB < 22.5. Beyond i'AB = 22.5 in the Wide field the number of outliers rises from 5% to 10% at i'AB<23 and i'AB<24 respectively. For the Wide sample, we find the systematic redshift bias keeps below 1% to i'AB < 22.5, whereas we find no significant bias in the Deep field. We investigated the effect of tile-to-tile photometric variations and demonstrate that the accuracy of our photometric redshifts is reduced by at most 21%. We separate stars from galaxies using both the size and colour information, reducing the contamination by stars in our catalogues from 50% to 8% at i'AB < 22.5 in fields with the highest stellar density while keeping a complete galaxy sample. Our CFHTLS T0004 photometric redshifts are distributed to the community. Our release include 592,891 (i'AB < 22.5) and 244,701 (i'AB < 24) reliable galaxy photometric redshifts in the Wide and Deep fields, respectively.Comment: 18 pages, 17 figure

    Hubble Space Telescope Observations of White Dwarfs in the Globular Cluster M4

    Get PDF
    With the Wide Field Planetary Camera 2 (WFPC2) on the Hubble Space Telescope, we have discovered in M4 (NGC 6121, C 1620-264) the first extensive sequence of cooling white dwarfs seen in a globular cluster. Adopting a distance modulus of (m-M)_V = 12.65 and a reddening of E(B-V) = 0.37, we show that the sequence, which extends over 9 < M_U < 13, is comprised of white dwarfs of mass \sim 0.5 M_{\odot}. The total mass loss from the present turnoff to the white dwarf sequence is 0.31 M_{\odot} and the intrinsic dispersion in the mean mass appears to be < 0.05 M_{\odot}. Both the location of the white dwarf cooling sequence in the cluster color-magnitude diagram and the cumulative luminosity function attest to the basic correctness and completeness of the physics in theoretical models for the upper three magnitudes of the observed white dwarf cooling sequence. To test the theory in globular clusters at cooling ages beyond \sim 3 \times 10^8 years will require deeper and more complete data.Comment: To appear in the Astrophysical Journal Letters, 451, September 20, 1995. The text is also available as a postscript file from http://www.astro.ubc.ca/people/richer/m4wd/m4wd.ps with postscript files of the figures available in http://www.astro.ubc.ca/people/richer/m4wd/fig1.ps http://www.astro.ubc.ca/people/richer/m4wd/fig2.ps http://www.astro.ubc.ca/people/richer/m4wd/fig3.p

    Cosmic Shear Analysis with CFHTLS Deep data

    Full text link
    We present the first cosmic shear measurements obtained from the T0001 release of the Canada-France-Hawaii Telescope Legacy Survey. The data set covers three uncorrelated patches (D1, D3 and D4) of one square degree each observed in u*, g', r', i' and z' bands, out to i'=25.5. The depth and the multicolored observations done in deep fields enable several data quality controls. The lensing signal is detected in both r' and i' bands and shows similar amplitude and slope in both filters. B-modes are found to be statistically zero at all scales. Using multi-color information, we derived a photometric redshift for each galaxy and separate the sample into medium and high-z galaxies. A stronger shear signal is detected from the high-z subsample than from the low-z subsample, as expected from weak lensing tomography. While further work is needed to model the effects of errors in the photometric redshifts, this results suggests that it will be possible to obtain constraints on the growth of dark matter fluctuations with lensing wide field surveys. The various quality tests and analysis discussed in this work demonstrate that MegaPrime/Megacam instrument produces excellent quality data. The combined Deep and Wide surveys give sigma_8= 0.89 pm 0.06 assuming the Peacock & Dodds non-linear scheme and sigma_8=0.86 pm 0.05 for the halo fitting model and Omega_m=0.3. We assumed a Cold Dark Matter model with flat geometry. Systematics, Hubble constant and redshift uncertainties have been marginalized over. Using only data from the Deep survey, the 1 sigma upper bound for w_0, the constant equation of state parameter is w_0 < -0.8.Comment: 14 pages, 16 figures, accepted A&
    • 

    corecore