98 research outputs found

    Rotorcraft In-Flight Simulation Research at NASA Ames Research Center: A Review of the 1980's and plans for the 1990's

    Get PDF
    A new flight research vehicle, the Rotorcraft-Aircrew System Concepts Airborne Laboratory (RASCAL), is being developed by the U.S. Army and NASA at ARC. The requirements for this new facility stem from a perception of rotorcraft system technology requirements for the next decade together with operational experience with the Boeing Vertol CH-47B research helicopter that was operated as an in-flight simulator at ARC during the past 10 years. Accordingly, both the principal design features of the CH-47B variable-stability system and the flight-control and cockpit-display programs that were conducted using this aircraft at ARC are reviewed. Another U.S Army helicopter, a Sikorsky UH-60A Black Hawk, was selected as the baseline vehicle for the RASCAL. The research programs that influence the design of the RASCAL are summarized, and the resultant requirements for the RASCAL research system are described. These research programs include investigations of advanced, integrated control concepts for achieving high levels of agility and maneuverability, and guidance technologies, employing computer/sensor-aiding, designed to assist the pilot during low-altitude flight in conditions of limited visibility. The approach to the development of the new facility is presented and selected plans for the preliminary design of the RASCAL are described

    Comparative analysis of eliciting capacity of raw and roasted peanuts: the role of gastrointestinal digestion

    Get PDF
    This study investigated the simultaneous impact of food matrix and processing on the food allergy eliciting capacity of peanuts in a physiologically relevant context. Whole raw and roasted peanuts were subjected to in vitro digestion combining the harmonized oral-gastric-duodenal digestion models with brush border membrane enzymes (BBM) to simulate the jejunal degradation of peptides. SDS-PAGE and HPLC analysis showed that roasting increased digestibility of peanuts and this trend was even more evident after BBM degradation. The eliciting properties of raw and roasted peanuts were assessed by Rat Basophil Leukemia assay in the presence of sera from peanut-allergic patients. As general features, the BBM digestion reduced allergenicity of roasted peanuts compared to the raw counterpart, suggesting that intestinal peptidases effectively contribute to further destroy specific domains of peanut allergens. These findings provide new and more realistic insights in the stability of peanut allergens within their natural matrix

    Empiricism Without the Senses: How the Instrument Replaced the Eye

    Get PDF
    On receiving news of Galileo’s observations of the four satellites of Jupiter and the rugged face of the moon through his newly invented perspicillum, Kepler in great excitement exclaimed: Therefore let Galileo take his stand by Kepler’s side. Let the former observe the moon with his face turned skyward, while the latter studies the sun by looking down at a screen (lest the lens injure his eyes). Let each employ his own device, and from this partnership may there some day arise an absolutely perfect theory of the distances. This Hollywood-like scene of the two astronomers marching hand in hand toward the dawn of a new scientific era was no attempt by Kepler to appropriate Galileo’s success or to diminish the novelty of the telescope. On the contrary, Kepler repeatedly asserted how short sighted he was in misjudging the potential for astronomical observations inherent in lenses, and how radically Galileo’s instrument transformed the science of astronomy. It was a deep sense of recognition that beyond their different scientific temperaments and projects, they shared a common agenda of a new mode of empirical engagement with the phenomenal world: the instrument. For Kepler and Galileo, empirical investigation was no longer a direct engagement with nature, but an essentially mediated endeavor. The new instruments were not to assist the human senses, but to replace them

    Brachypodium distachyon grain: identification and subcellular localization of storage proteins

    Get PDF
    Seed storage proteins are of great importance in nutrition and in industrial transformation because of their functional properties. Brachypodium distachyon has been proposed as a new model plant to study temperate cereals. The protein composition of Brachypodium grain was investigated by separating the proteins on the basis of their solubility combined with a proteomic approach. Salt-soluble proteins as well as salt-insoluble proteins separated by two-dimensional gel electrophoresis revealed 284 and 120 spots, respectively. Proteins from the major spots were sequenced by mass spectrometry and identified by searching against a Brachypodium putative protein database. Our analysis detected globulins and prolamins but no albumins. Globulins were represented mainly by the 11S type and their solubility properties corresponded to the glutelin found in rice. An in silico search for storage proteins returned more translated genes than expressed products identified by mass spectrometry, particularly in the case of prolamin type proteins, reflecting a strong expression of globulins at the expense of prolamins. Microscopic examination of endosperm cells revealed scarce small-size starch granules surrounded by protein bodies containing 11S globulins. The presence of protein bodies containing glutelins makes B. distachyon closer to rice or oat than to wheat endosperm

    Metabolomics-Based Discovery of Diagnostic Biomarkers for Onchocerciasis

    Get PDF
    Onchocerciasis, caused by the filarial parasite Onchocerca volvulus, afflicts millions of people, causing such debilitating symptoms as blindness and acute dermatitis. There are no accurate, sensitive means of diagnosing O. volvulus infection. Clinical diagnostics are desperately needed in order to achieve the goals of controlling and eliminating onchocerciasis and neglected tropical diseases in general. In this study, a metabolomics approach is introduced for the discovery of small molecule biomarkers that can be used to diagnose O. volvulus infection. Blood samples from O. volvulus infected and uninfected individuals from different geographic regions were compared using liquid chromatography separation and mass spectrometry identification. Thousands of chromatographic mass features were statistically compared to discover 14 mass features that were significantly different between infected and uninfected individuals. Multivariate statistical analysis and machine learning algorithms demonstrated how these biomarkers could be used to differentiate between infected and uninfected individuals and indicate that the diagnostic may even be sensitive enough to assess the viability of worms. This study suggests a future potential of these biomarkers for use in a field-based onchocerciasis diagnostic and how such an approach could be expanded for the development of diagnostics for other neglected tropical diseases

    Differences between Human Plasma and Serum Metabolite Profiles

    Get PDF
    BACKGROUND: Human plasma and serum are widely used matrices in clinical and biological studies. However, different collecting procedures and the coagulation cascade influence concentrations of both proteins and metabolites in these matrices. The effects on metabolite concentration profiles have not been fully characterized. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed the concentrations of 163 metabolites in plasma and serum samples collected simultaneously from 377 fasting individuals. To ensure data quality, 41 metabolites with low measurement stability were excluded from further analysis. In addition, plasma and corresponding serum samples from 83 individuals were re-measured in the same plates and mean correlation coefficients (r) of all metabolites between the duplicates were 0.83 and 0.80 in plasma and serum, respectively, indicating significantly better stability of plasma compared to serum (p = 0.01). Metabolite profiles from plasma and serum were clearly distinct with 104 metabolites showing significantly higher concentrations in serum. In particular, 9 metabolites showed relative concentration differences larger than 20%. Despite differences in absolute concentration between the two matrices, for most metabolites the overall correlation was high (mean r = 0.81±0.10), which reflects a proportional change in concentration. Furthermore, when two groups of individuals with different phenotypes were compared with each other using both matrices, more metabolites with significantly different concentrations could be identified in serum than in plasma. For example, when 51 type 2 diabetes (T2D) patients were compared with 326 non-T2D individuals, 15 more significantly different metabolites were found in serum, in addition to the 25 common to both matrices. CONCLUSIONS/SIGNIFICANCE: Our study shows that reproducibility was good in both plasma and serum, and better in plasma. Furthermore, as long as the same blood preparation procedure is used, either matrix should generate similar results in clinical and biological studies. The higher metabolite concentrations in serum, however, make it possible to provide more sensitive results in biomarker detection

    A Research Agenda for Helminth Diseases of Humans: Towards Control and Elimination

    Get PDF
    Human helminthiases are of considerable public health importance in sub-Saharan Africa, Asia, and Latin America. The acknowledgement of the disease burden due to helminth infections, the availability of donated or affordable drugs that are mostly safe and moderately efficacious, and the implementation of viable mass drug administration (MDA) interventions have prompted the establishment of various large-scale control and elimination programmes. These programmes have benefited from improved epidemiological mapping of the infections, better understanding of the scope and limitations of currently available diagnostics and of the relationship between infection and morbidity, feasibility of community-directed or school-based interventions, and advances in the design of monitoring and evaluation (M&E) protocols. Considerable success has been achieved in reducing morbidity or suppressing transmission in a number of settings, whilst challenges remain in many others. Some of the obstacles include the lack of diagnostic tools appropriate to the changing requirements of ongoing interventions and elimination settings; the reliance on a handful of drugs about which not enough is known regarding modes of action, modes of resistance, and optimal dosage singly or in combination; the difficulties in sustaining adequate coverage and compliance in prolonged and/or integrated programmes; an incomplete understanding of the social, behavioural, and environmental determinants of infection; and last, but not least, very little investment in research and development (R&D). The Disease Reference Group on Helminth Infections (DRG4), established in 2009 by the Special Programme for Research and Training in Tropical Diseases (TDR), was given the mandate to undertake a comprehensive review of recent advances in helminthiases research, identify research gaps, and rank priorities for an R&D agenda for the control and elimination of these infections. This review presents the processes undertaken to identify and rank ten top research priorities; discusses the implications of realising these priorities in terms of their potential for improving global health and achieving the Millennium Development Goals (MDGs); outlines salient research funding needs; and introduces the series of reviews that follow in this PLoS Neglected Tropical Diseases collection, “A Research Agenda for Helminth Diseases of Humans.

    Rationalising the role of Keratin 9 as a biomarker for Alzheimer’s disease

    Get PDF
    Keratin 9 was recently identified as an important component of a biomarker panel which demonstrated a high diagnostic accuracy (87%) for Alzheimer’s disease (AD). Understanding how a protein which is predominantly expressed in palmoplantar epidermis is implicated in AD may shed new light on the mechanisms underlying the disease. Here we use immunoassays to examine blood plasma expression patterns of Keratin 9 and its relationship to other AD-associated proteins. We correlate this with the use of an in silico analysis tool VisANT to elucidate possible pathways through which the involvement of Keratin 9 may take place. We identify possible links with Dickkopf-1, a negative regulator of the wnt pathway, and propose that the abnormal expression of Keratin 9 in AD blood and cerebrospinal fluid may be a result of blood brain barrier dysregulation and disruption of the ubiquitin proteasome system. Our findings suggest that dysregulated Keratin 9 expression is a consequence of AD pathology but, as it interacts with a broad range of proteins, it may have other, as yet uncharacterized, downstream effects which could contribute to AD onset and progression

    Presence of celiac disease epitopes in modern and old hexaploid wheat varieties: wheat breeding may have contributed to increased prevalence of celiac disease

    Get PDF
    Gluten proteins from wheat can induce celiac disease (CD) in genetically susceptible individuals. Specific gluten peptides can be presented by antigen presenting cells to gluten-sensitive T-cell lymphocytes leading to CD. During the last decades, a significant increase has been observed in the prevalence of CD. This may partly be attributed to an increase in awareness and to improved diagnostic techniques, but increased wheat and gluten consumption is also considered a major cause. To analyze whether wheat breeding contributed to the increase of the prevalence of CD, we have compared the genetic diversity of gluten proteins for the presence of two CD epitopes (Glia-α9 and Glia-α20) in 36 modern European wheat varieties and in 50 landraces representing the wheat varieties grown up to around a century ago. Glia-α9 is a major (immunodominant) epitope that is recognized by the majority of CD patients. The minor Glia-α20 was included as a technical reference. Overall, the presence of the Glia-α9 epitope was higher in the modern varieties, whereas the presence of the Glia-α20 epitope was lower, as compared to the landraces. This suggests that modern wheat breeding practices may have led to an increased exposure to CD epitopes. On the other hand, some modern varieties and landraces have been identified that have relatively low contents of both epitopes. Such selected lines may serve as a start to breed wheat for the introduction of ‘low CD toxic’ as a new breeding trait. Large-scale culture and consumption of such varieties would considerably aid in decreasing the prevalence of CD
    corecore