56 research outputs found

    Maltreated children use more grammatical negations

    Get PDF
    Many studies reveal a strong impact of childhood maltreatment on language development, mainly resulting in shorter utterances, less rich vocabulary, or a delay in grammatical complexity. However, different theories suggest the possibility for resilience – a positive adaptation to an otherwise adverse environment – in children who experienced childhood maltreatment. Here, we investigated different measures for language development in spontaneous speech, examining whether childhood maltreatment leads to a language deficit only or whether it can also result in differences in language use due to a possible adaptation to a toxic environment. We compared spontaneous speech during therapeutic peer-play sessions of 32 maltreated and 32 non-maltreated children from the same preschool and equivalent in gender, age (2 to 5 years), home neighborhood, ethnicity, and family income. Maltreatment status was reported by formal child protection reports, and corroborated by independent social service reports. We investigated general language sophistication (i.e., vocabulary, talkativeness, mean length of utterance), as well as grammatical development (i.e., use of plurals, tense, grammatical negations). We found that maltreated and non-maltreated children showed similar sophistication across all linguistic measures, except for the use of grammatical negations. Maltreated children used twice as many grammatical negations as non-maltreated children. The use of this highly complex grammatical structure shows an advanced linguistic skill, which shows that childhood maltreatment does not necessarily lead to a language deficit. The result might indicate the development of a negativity bias in the structure of spontaneous language due to an adaptation to their experiences

    A rockslide-generated tsunami in a Greenland fjord rang Earth for 9 days

    Get PDF
    Climate change is increasingly predisposing polar regions to large landslides. Tsunamigenic landslides have occurred recently in Greenland (Kalaallit Nunaat), but none have been reported from the eastern fjords. In September 2023, we detected the start of a 9-day-long, global 10.88-millihertz (92-second) monochromatic very-long-period (VLP) seismic signal, originating from East Greenland. In this study, we demonstrate how this event started with a glacial thinning–induced rock-ice avalanche of 25 × 106 cubic meters plunging into Dickson Fjord, triggering a 200-meter-high tsunami. Simulations show that the tsunami stabilized into a 7-meter-high long-duration seiche with a frequency (11.45 millihertz) and slow amplitude decay that were nearly identical to the seismic signal. An oscillating, fjord-transverse single force with a maximum amplitude of 5 × 1011 newtons reproduced the seismic amplitudes and their radiation pattern relative to the fjord, demonstrating how a seiche directly caused the 9-day-long seismic signal. Our findings highlight how climate change is causing cascading, hazardous feedbacks between the cryosphere, hydrosphere, and lithosphere.acceptedVersio

    Applications of electrified dust and dust devil electrodynamics to Martian atmospheric electricity

    Get PDF
    Atmospheric transport and suspension of dust frequently brings electrification, which may be substantial. Electric fields of 10 kVm-1 to 100 kVm-1 have been observed at the surface beneath suspended dust in the terrestrial atmosphere, and some electrification has been observed to persist in dust at levels to 5 km, as well as in volcanic plumes. The interaction between individual particles which causes the electrification is incompletely understood, and multiple processes are thought to be acting. A variation in particle charge with particle size, and the effect of gravitational separation explains to, some extent, the charge structures observed in terrestrial dust storms. More extensive flow-based modelling demonstrates that bulk electric fields in excess of 10 kV m-1 can be obtained rapidly (in less than 10 s) from rotating dust systems (dust devils) and that terrestrial breakdown fields can be obtained. Modelled profiles of electrical conductivity in the Martian atmosphere suggest the possibility of dust electrification, and dust devils have been suggested as a mechanism of charge separation able to maintain current flow between one region of the atmosphere and another, through a global circuit. Fundamental new understanding of Martian atmospheric electricity will result from the ExoMars mission, which carries the DREAMS (Dust characterization, Risk Assessment, and Environment Analyser on the Martian Surface)-MicroARES (Atmospheric Radiation and Electricity Sensor) instrumentation to Mars in 2016 for the first in situ measurements

    Schumann resonances at Mars: effects of the day-night asymmetry and the dust-loaded ionosphere

    Get PDF
    International audienceSchumann resonances are standing waves that oscillate in the electromagnetic cavity formed between the conducting lower ionosphere and the surface of the planet. They have been measured in-situ only on Earth and Titan, although they are believed to exist on other planets like Mars. We report numerical simulations of the Martian electromagnetic cavity, accounting for the day - night asymmetry and different dust scenarios. It has been found that the resonances are more energetic on the nightside, the first resonance is expected to be 9 - 14 Hz depending on the dust activity, and to have low quality factors (Q≃2). This work serves as an input for the upcoming Exomars surface platform (launch 2020), who will attempt to measure them for the first time

    Electrical Control of Uniformity in Quantum Dot Devices

    No full text
    Highly uniform quantum systems are essential for the practical implementation of scalable quantum processors. While quantum dot spin qubits based on semiconductor technology are a promising platform for large-scale quantum computing, their small size makes them particularly sensitive to their local environment. Here, we present a method to electrically obtain a high degree of uniformity in the intrinsic potential landscape using hysteretic shifts of the gate voltage characteristics. We demonstrate the tuning of pinch-off voltages in quantum dot devices over hundreds of millivolts that then remain stable at least for hours. Applying our method, we homogenize the pinch-off voltages of the plunger gates in a linear array for four quantum dots, reducing the spread in pinch-off voltages by one order of magnitude. This work provides a new tool for the tuning of quantum dot devices and offers new perspectives for the implementation of scalable spin qubit arrays.</p

    Micro-Ares, An electric field sensor for ExoMars 2016

    No full text
    International audienceFor the past few years, LATMOS has been involved in the development of Micro-ARES, an electric field sensor part of the science payload (DREAMS) of the ExoMars 2016 Schiaparelli entry, descent and landing demonstrator module (EDM). It is dedicated to the very first measurement and characterization of the Martian atmospheric electricity

    Low disorder and high valley splitting in silicon

    No full text
    The electrical characterisation of classical and quantum devices is a critical step in the development cycle of heterogeneous material stacks for semiconductor spin qubits. In the case of silicon, properties such as disorder and energy separation of conduction band valleys are commonly investigated individually upon modifications in selected parameters of the material stack. However, this reductionist approach fails to consider the interdependence between different structural and electronic properties at the danger of optimising one metric at the expense of the others. Here, we achieve a significant improvement in both disorder and valley splitting by taking a co-design approach to the material stack. We demonstrate isotopically purified, strained quantum wells with high mobility of 3.14(8) × 105 cm2 V−1 s−1 and low percolation density of 6.9(1) × 1010 cm−2. These low disorder quantum wells support quantum dots with low charge noise of 0.9(3) μeV Hz−1/2 and large mean valley splitting energy of 0.24(7) meV, measured in qubit devices. By striking the delicate balance between disorder, charge noise, and valley splitting, these findings provide a benchmark for silicon as a host semiconductor for quantum dot qubits. We foresee the application of these heterostructures in larger, high-performance quantum processors.QCD/Scappucci LabQRD/Kouwenhoven LabBUS/TNO STAFFQCD/Veldhorst LabQN/Vandersypen LabQN/Veldhorst La
    corecore