1,242 research outputs found
Pre-main sequence stars with disks in the Eagle Nebula observed in scattered light
NGC6611 and its parental cloud, the Eagle Nebula (M16), are well-studied
star-forming regions, thanks to their large content of both OB stars and stars
with disks and the observed ongoing star formation. We identified 834
disk-bearing stars associated with the cloud, after detecting their excesses in
NIR bands from J band to 8.0 micron. In this paper, we study in detail the
nature of a subsample of disk-bearing stars that show peculiar characteristics.
They appear older than the other members in the V vs. V-I diagram, and/or they
have one or more IRAC colors at pure photospheric values, despite showing NIR
excesses, when optical and infrared colors are compared. We confirm the
membership of these stars to M16 by a spectroscopic analysis. The physical
properties of these stars with disks are studied by comparing their spectral
energy distributions (SEDs) with the SEDs predicted by models of T-Tauri stars
with disks and envelopes. We show that the age of these stars estimated from
the V vs. V-I diagram is unreliable since their V-I colors are altered by the
light scattered by the disk into the line of sight. Only in a few cases their
SEDs are compatible with models with excesses in V band caused by optical
veiling. Candidate members with disks and photospheric IRAC colors are selected
by the used NIR disk diagnostic, which is sensitive to moderate excesses, such
as those produced by disks with low masses. In 1/3 of these cases, scattering
of stellar flux by the disks can also be invoked. The photospheric light
scattered by the disk grains into the line of sight can affect the derivation
of physical parameters of ClassII stars from photometric optical and NIR data.
Besides, the disks diagnostic we defined are useful for selecting stars with
disks, even those with moderate excesses or whose optical colors are altered by
veiling or photospheric scattered light.Comment: Accepted for publication in A&
Disk evolution in the Ori OB1 association
We analyze multi-band photometry of a subsample of low mass stars in the
associations Ori OB1a and 1b discovered during the CIDA Orion Variability
Survey, which have ages of 7 - 10 Myr and 3 - 5 Myr, respectively. We obtained
UBVRcIc photometry at Mt. Hopkins for 6 Classical T Tauri stars (CTTS) and 26
Weak T Tauri stars (WTTS) in Ori OB1a, and for 21 CTTS and 2 WTTS in Ori OB1b.
We also obtained L band photometry for 14 CTTS at Mt. Hopkins, and 10um and
18um photometry with OSCIR at Gemini for 6 CTTS; of these, all 6 were detected
at 10um while only one was detected at 18um. We estimate mass accretion rates
from the excess luminosity at U, and find that they are consistent with
determinations for a number of other associations, with or without high mass
star formation. The observed decrease of mass accretion rate with age is
qualitatively consistent with predictions of viscous evolution of accretion
disks. We find an overall decrease of disk emission from Taurus to Ori OB1b to
Ori OB1a. This decrease implies that significant grain growth and settling
towards the midplane has taken place in the inner disks of Ori OB1. We compare
the SED of the star detected at both 10um and 18um with disk models for similar
stellar and accretion parameters. We find that the low <= 18 um fluxes of this
Ori OB1b star cannot be due to the smaller disk radius expected from viscous
evolution in the presence of the FUV radiation fields from the OB stars in the
association. Instead, we find that the disk of this star is essentially a flat
disk, with little if any flaring, indicating a a significant degree of dust
settling towards the midplane, as expected from dust evolution in
protoplanetary disks.Comment: 35 pages, 11 figures, to appear in the Astronomical Journal. Full
resolution figures in http://www.cida.ve/~briceno/publications
Correlation between the spatial distribution of circumstellar disks and massive stars in the young open cluster NGC 6611. II: Cluster members selected with Spitzer/IRAC
Context: the observations of the proplyds in the Orion Nebula Cluster,
showing clear evidence of ongoing photoevaporation, have provided a clear proof
about the role of the externally induced photoevaporation in the evolution of
circumstellar disks. NGC 6611 is an open cluster suitable to study disk
photoevaporation, thanks to its large population of massive members and of
stars with disk. In a previous work, we obtained evidence of the influence of
the strong UV field generated by the massive cluster members on the evolution
of disks around low-mass Pre-Main Sequence members. That work was based on a
multi-band BVIJHK and X-ray catalog purposely compiled to select the cluster
members with and without disk. Aims: in this paper we complete the list of
candidate cluster members, using data at longer wavelengths obtained with
Spitzer/IRAC, and we revisit the issue of the effects of UV radiation on the
evolution of disks in NGC 6611. Methods: we select the candidate members with
disks of NGC 6611, in a field of view of 33'x34' centered on the cluster, using
IRAC color-color diagrams and suitable reddening-free color indices. Besides,
using the X-ray data to select Class III cluster members, we estimate the disks
frequency vs. the intensity of the incident radiation emitted by massive
members. Results: we identify 458 candidate members with circumstellar disks,
among which 146 had not been revealed in our previous work. Comparing of the
various color indices we used to select the cluster members with disk, we claim
that they detect the excesses due to the emission of the same physical region
of the disk: the inner rim at the dust sublimation radius. Our new results
confirm that UV radiation from massive stars affects the evolution of nearby
circumstellar disks.Comment: Accepted for publication at Astronomy & Astrophysic
The Effects of UV Continuum and Lyman alpha Radiation on the Chemical Equilibrium of T Tauri Disks
We show in this Letter that the spectral details of the FUV radiation fields
have a large impact on the chemistry of protoplanetary disks surrounding T
Tauri stars. We show that the strength of a realistic stellar FUV field is
significantly lower than typically assumed in chemical calculations and that
the radiation field is dominated by strong line emission, most notably Lyman
alpha radiation. The effects of the strong Lyman alpha emission on the chemical
equilibrium in protoplanetary disks has previously been unrecognized. We
discuss the impact of this radiation on molecular observations in the context
of a radiative transfer model that includes both direct attenuation and
scattering. In particular, Lyman alpha radiation will directly dissociate water
vapor and may contribute to the observed enhancements of CN/HCN in disks.Comment: 14 pages, 4 figures, accepted by ApJ Letter
Mineral Processing by Short Circuits in Protoplanetary Disks
Meteoritic chondrules were formed in the early solar system by brief heating
of silicate dust to melting temperatures. Some highly refractory grains (Type B
calcium-aluminum-rich inclusions, CAIs) also show signs of transient heating. A
similar process may occur in other protoplanetary disks, as evidenced by
observations of spectra characteristic of crystalline silicates. One possible
environment for this process is the turbulent magnetohydrodynamic flow thought
to drive accretion in these disks. Such flows generally form thin current
sheets, which are sites of magnetic reconnection, and dissipate the magnetic
fields amplified by a disk dynamo. We suggest that it is possible to heat
precursor grains for chondrules and other high-temperature minerals in current
sheets that have been concentrated by our recently described short-circuit
instability. We extend our work on this process by including the effects of
radiative cooling, taking into account the temperature dependence of the
opacity; and by examining current sheet geometry in three-dimensional, global
models of magnetorotational instability. We find that temperatures above 1600 K
can be reached for favorable parameters that match the ideal global models.
This mechanism could provide an efficient means of tapping the gravitational
potential energy of the protoplanetary disk to heat grains strongly enough to
form high-temperature minerals. The volume-filling nature of turbulent magnetic
reconnection is compatible with constraints from chondrule-matrix
complementarity, chondrule-chondrule complementarity, the occurrence of igneous
rims, and compound chondrules. The same short-circuit mechanism may perform
other high-temperature mineral processing in protoplanetary disks such as the
production of crystalline silicates and CAIs.Comment: 6 pages, 3 figures, ApJL published versio
The Masses of Transition Circumstellar Disks: Observational Support for Photoevaporation Models
We report deep Sub-Millimeter Array observations of 26 pre-main-sequence
(PMS) stars with evolved inner disks. These observations measure the mass of
the outer disk (r ~20-100 AU) across every stage of the dissipation of the
inner disk (r < 10 AU) as determined by the IR spectral energy distributions
(SEDs). We find that only targets with high mid-IR excesses are detected and
have disk masses in the 1-5 M_Jup range, while most of our objects remain
undetected to sensitivity levels of M_DISK ~0.2-1.5 M_Jup. To put these results
in a more general context, we collected publicly available data to construct
the optical to millimeter wavelength SEDs of over 120 additional PMS stars. We
find that the near-IR and mid-IR emission remain optically thick in objects
whose disk masses span 2 orders of magnitude (~0.5-50 M_Jup). Taken together,
these results imply that, in general, inner disks start to dissipate only after
the outer disk has been significantly depleted of mass. This provides strong
support for photoevaporation being one of the dominant processes driving disk
evolution.Comment: Accepted for publication by ApJL, 4 pages and 3 figure
Impact of grain evolution on the chemical structure of protoplanetary disks
We study the impact of dust evolution in a protoplanetary disk around a T
Tauri star on the disk chemical composition. For the first time we utilize a
comprehensive model of dust evolution which includes growth, fragmentation and
sedimentation. Specific attention is paid to the influence of grain evolution
on the penetration of the UV field in the disk. A chemical model that includes
a comprehensive set of gas phase and grain surface chemical reactions is used
to simulate the chemical structure of the disk. The main effect of the grain
evolution on the disk chemical composition comes from sedimentation, and, to a
lesser degree, from the reduction of the total grain surface area. The net
effect of grain growth is suppressed by the fragmentation process which
maintains a population of small grains, dominating the total grain surface
area. We consider three models of dust properties. In model GS both growth and
sedimentation are taken into account. In models A5 and A4 all grains are
assumed to have the same size (10(-5) cm and 10(-4) cm, respectively) with
constant gas-to-dust mass ratio of 100. Like in previous studies, the
"three-layer" pattern (midplane, molecular layer, hot atmosphere) in the disk
chemical structure is preserved in all models, but shifted closer to the
midplane in models with increased grain size (GS and A4). Unlike other similar
studies, we find that in models GS and A4 column densities of most gas-phase
species are enhanced by 1-3 orders of magnitude relative to those in a model
with pristine dust (A5), while column densities of their surface counterparts
are decreased. We show that column densities of certain species, like C2H,
HC(2n+1)N (n=0-3), H2O and some other molecules, as well as the C2H2/HCN
abundance ratio which are accessible with Herschel and ALMA can be used as
observational tracers of early stages of the grain evolution process in
protoplanetary disks.Comment: 50 pages, 4 tables, 11 figures, accepted to the Ap
Evidence for Evolution Among Primordial Disks in the 5 Myr Old Upper Scorpius OB Association
Moderate-resolution, near-infrared spectra between 0.8 and 5.2 microns were
obtained for 12 late-type (K0-M3) disk-bearing members of the ~5 Myr old Upper
Scorpius OB association using SpeX on the NASA Infrared Telescope Facility. For
most sources, continuum excess emission first becomes apparent between ~2.2 and
4.5 microns and is consistent with that produced by single-temperature
blackbodies having characteristic temperatures ranging from ~500 to 1300 K. The
near-infrared spectra for 5 of 12 Upper Scorpius sources exhibit Pa-gamma,
Pa-beta and Br-gamma emission, indicators of disk accretion. Using a
correlation between Pa-beta and Br-gamma emission line luminosity and accretion
luminosity, mass accretion rates (Mdot) are derived for these sources that
range from Mdot = 3.5 X 10^{-10} to 1.5 X 10^{-8} MSun per yr. Merging the SpeX
observations with Spitzer Space Telescope mid-infrared (5.4-37.0 micron)
spectroscopy and 24 and 70 micron broadband photometry, the observed spectral
energy distributions are compared with those predicted by two-dimensional,
radiative transfer accretion disk models. Of the 9 Upper Scorpius sources
examined in this analysis, 3 exhibit spectral energy distributions that are
most consistent with models having inner disk radii that substantially exceed
their respective dust sublimation radii. The remaining Upper Scorpius members
possess spectral energy distributions that either show significant dispersion
among predicted inner disk radii or are best described by models having inner
disk rims coincident with the dust sublimation radius.Comment: 35 pages, 5 figures, accepted for publication in the Astronomical
Journa
- …
