208 research outputs found

    A social support scale for music students in music schools, academies, and conservatories: An adaptation into Spanish and a factorial invariance study

    Get PDF
    Social support is one of the variables that exert the greatest influence on the motivation of music students, as well as on emotional aspects that affect their results. Research, however, is limited by the current scarcity of evaluation tools. This article thus presents the process of adaptation into Spanish of the Social Support Scale. We report on the elaboration of the questionnaire’s exact wording through direct and reverse translation. We subsequently present analysis of internal reliability and validity based on a sample of 668 music students in music schools and university-level music academies, aged 12–60 (mean 16.9). The study is complemented by an analysis of factorial invariance comparing secondary education and university. The results reproduce the social support factors stemming from parents and teachers; peer support is subdivided into two subcategories. Discrepancies with the original version are not so much due to the adaptation process, but can be attributed, for the most part, to differences between the sample compositions. Our results indicate that Spanish music students perceive a considerable amount of social support for their music learning activities; differences stand out, however, in terms of age, gender, and educational level

    Atomic-scale mechanisms for magnetostriction in CoFe2O4 and La0.5Sr0.5CoO3 oxides determined by differential x-ray absorption spectroscopy

    Get PDF
    The atomic environments involved in the magnetostriction effect in CoFe2O4 and La0.5Sr0.5CoO3 poly-crystalline samples have been identified by differential extended x-ray absorption fine structure (DiffEXAFS) spectroscopy. We demonstrate that cobalt atoms at octahedral sites are responsible for their magnetostriction. The analysis of DiffEXAFS data indicates that the local-site magnetostrictive strains of Co atoms are reversed in these two oxides, in agreement with the macroscopic magnetostriction. For the CoFe2O4 spinel, a large negative strain along the (100) direction has been determined for the CoO6 octahedron causing a tetragonal contraction in contrast with the La0.5Sr0.5CoO3 perovskite, where a positive moderate strain along the (100) direction was found resulting in a tetragonal expansion. The different local-site magnetostriction is understood in terms of the different valence and spin state of the Co atoms for the two oxides. The macroscopic magnetostriction would be explained then by the relative change in volume, either contraction in CoFe2O4 or expansion in La0.5Sr0.5CoO3, when the tetragonal axis of the Co site is reoriented under an externally applied magnetic field

    Effects of A -site ordering on the Mn local structure and polar phases of R Ba Mn 2 O 6 ( R = La , Nd, Sm, and Y)

    Get PDF
    We have investigated the temperature dependence of the Mn local structure in A-site ordered RBaMn2O6 (R = La, Nd, Sm, and Y) perovskites, in parallel with their disordered counterparts, R0.5Ba0.5MnO3, by means of x-ray emission (XES) and x-ray absorption spectroscopy (XAS) The end member LaBaMn2O6 shows a nearly regular MnO6 octahedron independent of temperature. With decreasing the R ionic radius in the ordered samples, the XAS results indicate that a local distortion develops in the MnO6 octahedron at the low-temperature charge-localized and polar phases. For NdBaMn2O6, this local distortion is tiny, indicating the absence of charge segregation at the Mn site. This is followed by a bigger local distortion anticipated for SmBaMn2O6 in its respective charge-localized and polar phase and finally, the biggest local distortion for the smallest A-site cation ordered compound, YBaMn2O6, for which it even persists above the polar charge-localization transition temperatures. The high-resolution XAS spectra confirm the presence of charge segregation between two nonequivalent Mn sites in the low-temperature polar phase of Sm and Y ordered samples. Thus, our XAS study suggests a displacive mechanism for the charge-localization and polar transitions in the Nd and Sm ordered samples while a combination of displacive and order-disorder contributions is revealed for YBaMn2O6. Besides, calorimetric measurements confirm the combination of the two mechanisms, order-disorder and displacive, for the ordered Sm and Y compounds. On the other hand, the A-site disordered R0.5Ba0.5MnO3 samples with R cations smaller than Nd present a significant static (temperature-independent) local disorder, which explains why polar charge-localization transitions are not developed in these samples. Finally, we correlate our results about the Mn local structure and character of the transitions with the macroscopic magnetic and electric behavior of both A-site ordered and disordered compounds

    Phase stability and electronic structure of iridium metal at the megabar range

    Get PDF
    [EN] The 5d transition metals have attracted specific interest for high-pressure studies due to their extraordinary stability and intriguing electronic properties. In particular, iridium metal has been proposed to exhibit a recently discovered pressure-induced electronic transition, the so-called core-level crossing transition at the lowest pressure among all the 5d transition metals. Here, we report an experimental structural characterization of iridium by x-ray probes sensitive to both long- and short-range order in matter. Synchrotron-based powder x-ray diffraction results highlight a large stability range (up to 1.4 Mbar) of the low-pressure phase. The compressibility behaviour was characterized by an accurate determination of the pressure-volume equation of state, with a bulk modulus of 339(3) GPa and its derivative of 5.3(1). X-ray absorption spectroscopy, which probes the local structure and the empty density of electronic states above the Fermi level, was also utilized. The remarkable agreement observed between experimental and calculated spectra validates the reliability of theoretical predictions of the pressure dependence of the electronic structure of iridium in the studied interval of compressions.The authors thank the financial support of the Spanish Ministry of Science, Innovation and Universities, the Spanish Research Agency (AEI), the European Fund for Regional Development (FEDER) under Grant No. MAT2016-75586-C4-1/2-P and the Generalitat Valenciana under Grant Prometeo/2018/123 (EFIMAT). V. M. acknowledges the Juan de la Cierva fellowship (FJCI-2016-27921) and J.A.S. acknowledges the Ramón y Cajal fellowship program (RYC-2015-17482) and Spanish Mineco Project FIS2017-83295-P. We acknowledge the European Synchrotron Radiation Facility for provision of official research beamtimes, the Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linköping University (Faculty Grant SFO-Mat-LiU No 2009 00971), Knut and Alice Wallenbergs Foundation Project Strong Field Physics and New States of Matter CoTXS (2014 2019). The interpretation of theoretical results was supported by the Ministry of Science and High Education of the Russian Federation in the framework of Increase Competitiveness Program of NUST MISIS (No. K2-2019-001) implemented by a governmental decree dated 16 March 2013, No 211.Monteseguro, V.; Sans-Tresserras, JÁ.; Cuartero, V.; Cova, F.; Abrikosov, I.; Olovsson, W.; Popescu, C.... (2019). Phase stability and electronic structure of iridium metal at the megabar range. Scientific Reports. 9:1-9. https://doi.org/10.1038/s41598-019-45401-xS199Cynn, H., Klepeis, J. E., Yoo, C.-S. & Young, D. A. Osmium has the Lowest Experimentally Determined Compressibility. Phys. Rev. Lett. 88, 135701–135704 (2002).Döhring, T. et al. Prototyping iridium coated mirrors for x-ray astronomy. Proc. SPIE 10235, 1023504–1023511 (2017).Bednorz, J. G. & Müller, K. A. Possible high Tc superconductivity in the Ba−La−Cu−O system. Z. Phys. B: Condens. Matter 64, 189–193 (1986).Tokura, Y. & Nagaosa, N. Orbital Physics in Transition-Metal Oxides. Science 288, 462–468 (2000).Kobayashi, K.-I., Kimura, T., Sawada, H., Terakura, K. & Tokura, Y. Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure. Nature (London) 395, 677–680 (1998).Hrubiak, R., Meng, Y. & Shen, G. Microstructures define melting of molybdenum at high pressures. Nature Commun. 8, 14562–14571 (2017).Cerenius, Y. & Dubrovinsky, L. Compressibility measurements on iridium. J. Alloys Compd. 306, 26–29 (2000).Grussendorff, S., Chetty, N. & Dreysse, H. Theoretical studies of iridium under pressure. J. Phys. Condens. Matter 15, 4127–4134 (2003).Burakovsky, L. et al. Ab initio phase diagram of iridium. Phys. Rev. B 94, 094112–094120 (2016).Dubrovinsky, L. et al. The most incompressible metal osmium at static pressures above 750 gigapascals. Nature 525, 226–229 (2015).Tal, A. A. et al. Pressure-induced crossing of the core levels in 5d metals. Phys. Rev. B 93, 205150–205156 (2016).Merkel, S. et al. Deformation of polycrystalline MgO at pressures of the lower mantle. J Geophys Res. 107, 2271–2287 (2002).Greenberg, E. et al. Pressure-Induced Site-Selective Mott Insulator-Metal Transition in Fe2O3. Phys. Rev. X 8, 031059–031071 (2018).Nemoshkalenko, V. V., Mil’man, V. Y., Zhalko-Titarenko, A. V., Antonov, V. N. & Shitikov, Y. L. Pis’ma Zh. Eksp Teor. Fiz 47, 295–297 (1988).Rehr, J. J. & Albers, R. C. Theoretical approaches to x-ray absorption fine structure. Rev. Mod. Phys. 72, 621–654 (2000).Poiarkova, A. V. & Rehr, J. J. Multiple-scattering x-ray-absorption fine-structure Debye-Waller factor calculations. Phys. Rev. B 59, 948–957 (1998).Glazyrin, K. et al. Importance of correlation effects in hcp iron revealed by a pressure-induced electronic topological transition. Phys. Rev. Lett. 110, 117206–117210 (2013).Sham, T. K. L-edge x-ray-absorption systematics of the noble metals Rh, Pd, and Ag and the main-group metals In and Sn: A study of the unoccupied density of states in 4d elements. Phys. Rev. B 31, 1888–1902 (1985).Leapman, R. D., Grunes, L. A. & Fejes, P. L. Study of the L23 edges in the 3d transition metals and their oxides by electron-energy-loss spectroscopy with comparisons to theory. Phys. Rev. B 26, 614–635 (1982).Choy, J.-H., Kim, D.-K., Hwang, S.-H., Demazeau, G. & Jung, D.-Y. the Ir-O Bond Covalency in Ionic Iridium Perovskites. J. Am. Chem. Soc. 117, 8557–8566 (1995).Clancy, J. P. et al. Spin-orbit coupling in iridium-based 5d compounds probed by x-ray absorption spectroscopy. Phys. Rev. B 86, 195131- (2012).Snigirev, A., Kohn, V., Snigireva, I. & Lengeler, B. A compound refractive lens for focusing high-energy X-rays. Nature 384, 49–51 (1996).Dewaele, A., Loubeyre, P. & Mezouar, M. Equations of state of six metals above 94 GPa. Phys. Rev. B 70, 094112–094119 (2004).Prescher, C. & Prakapenka, V. B. DIOPTAS: a program for reduction of twodimensional X-ray diffraction data and data exploration. High Pressure Res. 35, 223–230 (2015).Toby, B. H. & Von Dreele, R. B. GSAS-II: the genesis of a modern open-source all-purpose crystallography software package. J. Appl. Cryst. 46(2), 544–549 (2013).Birch, F. Finite strain isotherm and velocities for single‐crystal and polycrystalline NaCl at high pressures and 300 K. J. Geophys. Res. 83, 1257–1268 (1978).Angel, R. J., González-Platas, J. & Alvaro, M. EosFit7c and a Fortran module (library) for equation of state calculations. Z. Kristallogr. 229, 405–419 (2014).Mathon, O. et al. The time-resolved and extreme conditions XAS (TEXAS) facility at the European Synchrotron Radiation Facility: the general-purpose EXAFS bending-magnet beamline BM23. J. Synchrotron Radiat. 22, 1548–1554 (2015).Ohfuji, H. et al. "Natural occurrence of pure nano-polycrystalline diamond from impact crater". Scientific Reports. 5: 14702.s, L. D., 2000. J. Alloys Compd. 306, 26–29 (2015).Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–577 (2005).Blaha, P., Schwarz, K., Madsen, G. K. H., Kvasnicka, D. & Luitz, J. WIEN2K, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties. Karlheinz Schwarz, Techn. Universität, Wien, Austria. (2001).Perdew, J. P., Burke, S. & Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Growth and nutrient absorption of Cape Gooseberry (Physalis Peruviana L.) in soilless culture

    Full text link
    "This is an Author's Accepted Manuscript of an article published in [include the complete citation information for the final version of the article as published in the Journal of Plant Nutrition 2015 March, available online at: http://www.tandfonline.com/10.1080/01904167.2014.934474."Cape gooseberry (Physalis peruviana L.) is a solanaceous plant. The growth and time-course of nutrient accumulation of the plant and its partitioning between roots, stems, leaves, and fruits were examined. The study was conducted analyzing two nutrient solutions in soilless culture under greenhouse conditions during two consecutive seasons. The macronutrient contents were analyzed. On average, the yield was 8.9 t.ha(-1). Growth of the plant until 90 d after transplanting obeys an exponential function of time and the relative growth rate for this period was determined. Nitrogen (N) was the element that showed the highest concentration, corresponding to leaves (4.67%), followed by potassium (K) in stems (4.46%). The highest accumulations of N, phosphorous (P), calcium (Ca), and magnesium (Mg) were found in leaves and of K in the stems. Potassium showed the highest nutrient accumulation (29 g.plant(-1)) and the highest specific uptake rate.Torres Rubio, JF.; Pascual Seva, N.; San Bautista Primo, A.; Pascual España, B.; López Galarza, SV.; Alagarda Pardo, J.; Maroto Borrego, JV. (2015). Growth and nutrient absorption of Cape Gooseberry (Physalis Peruviana L.) in soilless culture. Journal of Plant Nutrition. 38(4):485-496. doi:10.1080/01904167.2014.934474S485496384Bellaloui, N., & Brown, P. H. (1998). Plant and Soil, 198(2), 153-158. doi:10.1023/a:1004343031242Bennett, J. P., Oshima, R. J., & Lippert, L. F. (1979). Effects of ozone on injury and dry matter partitioning in pepper plants. Environmental and Experimental Botany, 19(1), 33-39. doi:10.1016/0098-8472(79)90022-4CAUSTON, D. R. (1991). Plant Growth Analysis: The Variability of Relative Growth Rate Within a Sample. Annals of Botany, 67(2), 137-144. doi:10.1093/oxfordjournals.aob.a088112Convenio MAG-IICA (Ministerio de Agricultura y Ganadería. Institución Interamericana de Cooperación para la Agricultura). 2001. The cape gooseberry (Physalis peruvianaL.Physalis edulis). Subprograma de Cooperación Técnica, Ecuador. Available at: http://www.sica.gov.ec/agronegocios/Biblioteca/Convenio%20MAG%20IICA/productos/uvilla_mag.pdf (Accessed July 2007, in Spanish).El-Tohamy, W. A., El-Abagy, H. M., Abou-Hussein, S. D., & Gruda, N. (2009). Response of Cape gooseberry (Physalis peruviana L.) to nitrogen application under sandy soil conditions. Gesunde Pflanzen, 61(3-4), 123-127. doi:10.1007/s10343-009-0211-0Fresquet, J., Pascual, B., López-Galarza, S., Bautista, S., Baixauli, C., Gisbert, J. M., & Maroto, J. V. (2001). Nutrient uptake of pepino plants in soilless cultivation. The Journal of Horticultural Science and Biotechnology, 76(3), 338-343. doi:10.1080/14620316.2001.11511373Heuvelink, E., Bakker, M. J., Elings, A., Kaarsemaker, R. C., & Marcelis, L. F. M. (2005). EFFECT OF LEAF AREA ON TOMATO YIELD. Acta Horticulturae, (691), 43-50. doi:10.17660/actahortic.2005.691.2Leskovar, D. I., & Cantliffe, D. J. (1993). Comparison of Plant Establishment Method, Transplant, or Direct Seeding on Growth and Yield of Bell Pepper. Journal of the American Society for Horticultural Science, 118(1), 17-22. doi:10.21273/jashs.118.1.17Marcelis, L. F. M. (1993). Fruit growth and biomass allocation to the fruits in cucumber. 1. Effect of fruit load and temperature. Scientia Horticulturae, 54(2), 107-121. doi:10.1016/0304-4238(93)90059-yPuente, L. A., Pinto-Muñoz, C. A., Castro, E. S., & Cortés, M. (2011). Physalis peruviana Linnaeus, the multiple properties of a highly functional fruit: A review. Food Research International, 44(7), 1733-1740. doi:10.1016/j.foodres.2010.09.034Radford, P. J. (1967). Growth Analysis Formulae - Their Use and Abuse1. Crop Science, 7(3), 171. doi:10.2135/cropsci1967.0011183x000700030001xRamadan, M. F., & Moersel, J. T. (2007). Impact of enzymatic treatment on chemical composition, physicochemical properties and radical scavenging activity of goldenberry (Physalis peruviana L.) juice. Journal of the Science of Food and Agriculture, 87(3), 452-460. doi:10.1002/jsfa.2728Ramadan, M. F., & Moersel, J.-T. (2009). Oil extractability from enzymatically treated goldenberry (Physalis peruvianaL.) pomace: range of operational variables. International Journal of Food Science & Technology, 44(3), 435-444. doi:10.1111/j.1365-2621.2006.01511.xSalazar, M. R., Jones, J. W., Chaves, B., & Cooman, A. (2008). A model for the potential production and dry matter distribution of Cape gooseberry (Physalis peruviana L.). Scientia Horticulturae, 115(2), 142-148. doi:10.1016/j.scienta.2007.08.015Scholberg, J., McNeal, B. L., Jones, J. W., Boote, K. J., Stanley, C. D., & Obreza, T. A. (2000). Growth and Canopy Characteristics of Field-Grown Tomato. Agronomy Journal, 92(1), 152. doi:10.2134/agronj2000.921152xTrinchero, G. D., Sozzi, G. O., Cerri, A. M., Vilella, F., & Fraschina, A. A. (1999). Ripening-related changes in ethylene production, respiration rate and cell-wall enzyme activity in goldenberry (Physalis peruviana L.), a solanaceous species. Postharvest Biology and Technology, 16(2), 139-145. doi:10.1016/s0925-5214(99)00011-3Turner, A. (1994). Dry Matter Assimilation and Partitioning in Pepper Cultivars Differing in Susceptibility to Stress-induced Bud and Flower Abscission. Annals of Botany, 73(6), 617-622. doi:10.1006/anbo.1994.1077WILLIAMS, R. F. (1946). The Physiology of Plant Growth with Special Reference to the Concept of Net Assimilation Rate. Annals of Botany, 10(1), 41-72. doi:10.1093/oxfordjournals.aob.a083119Zapata, J.L., A. Saldarriaga, M. Londoño, and C. Díaz. 2002. Cape gooseberry Management in Colombia. Antioquia, Colombia: Rionegro, Programa Nacional de Transferencia de Tecnología Agropecuaria - Corpoica Regional Cuatro (in Spanish).Zerihun, A. (2000). Compensatory Roles of Nitrogen Uptake and Photosynthetic N-use Efficiency in Determining Plant Growth Response to Elevated CO2: Evaluation Using a Functional Balance Model. Annals of Botany, 86(4), 723-730. doi:10.1006/anbo.2000.123

    Outbreak of severe vomiting in dogs associated with a canine enteric coronavirus, United Kingdom

    Get PDF
    The lack of population health surveillance for companion animal populations leaves them vulnerable to the effects of novel diseases without means of early detection. We present evidence on the effectiveness of a system that enabled early detection and rapid response to a canine gastroenteritis outbreak in the United Kingdom. In January 2020, prolific vomiting among dogs was sporadically reported in the United Kingdom. Electronic health records from a nationwide sentinel network of veterinary practices confirmed a significant increase in dogs with signs of gastroenteric disease. Male dogs and dogs living with other vomiting dogs were more likely to be affected. Diet and vaccination status were not associated with the disease; however, a canine enteric coronavirus was significantly associated with illness. The system we describe potentially fills a gap in surveillance in neglected populations and could provide a blueprint for other countries

    Insulin resistance and its association with the components of the metabolic syndrome among obese children and adolescents

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Insulin resistance is the primary metabolic disorder associated with obesity; yet little is known about its role as a determinant of the metabolic syndrome in obese children. The aim of this study is to assess the association between the degree of insulin resistance and the different components of the metabolic syndrome among obese children and adolescents.</p> <p>Methods</p> <p>An analytical, cross-sectional and population-based study was performed in forty-four public primary schools in Campeche City, Mexico. A total of 466 obese children and adolescents between 11-13 years of age were recruited. Fasting glucose and insulin concentrations, high density lipoprotein cholesterol, triglycerides, waist circumference, systolic and diastolic blood pressures were measured; insulin resistance and metabolic syndrome were also evaluated.</p> <p>Results</p> <p>Out of the total population studied, 69% presented low values of high density lipoprotein cholesterol, 49% suffered from abdominal obesity, 29% had hypertriglyceridemia, 8% presented high systolic and 13% high diastolic blood pressure, 4% showed impaired fasting glucose, 51% presented insulin resistance and 20% metabolic syndrome. In spite of being obese, 13% of the investigated population did not present any metabolic disorder. For each one of the components of the metabolic syndrome, when insulin resistance increased so did odds ratios as cardiometabolic risk factors.</p> <p>Conclusions</p> <p>Regardless of age and gender an increased degree of insulin resistance is associated with a higher prevalence of disorders in each of the components of the metabolic syndrome and with a heightened risk of suffering metabolic syndrome among obese children and adolescents.</p
    corecore