1,155 research outputs found

    Matrix Model Maps and Reconstruction of AdS SUGRA Interactions

    Full text link
    We consider the question of reconstructing (cubic) SUGRA interactions in AdS/CFT. The method we introduce is based on the matrix model maps (MMP) which were previously successfully employed at the linearized level. The strategy is to start with the map for 1/2 BPS configurations which is exactly known (to all orders) in the hamiltonian framework. We then use the extension of the matrix model map with the corresponding Ward identities to completely specify the interaction. A central point in this construction is the non-vanishing of off-shell interactions (even for highest-weight states).Comment: 28 page

    Inverted Oscillator

    Get PDF
    The inverted harmonic oscillator problem is investigated quantum mechanically. The exact wave function for the confined inverted oscillator is obtained and it is shown that the associated energy eigenvalues are discrete and it is given as a linear function of the quantum number nn.Comment: 4 page

    Supersymmetric Wilson loops via integral forms

    Get PDF
    We study supersymmetric Wilson loops from a geometrical perspective. To this end, we propose a new formulation of these operators in terms of an integral form associated to the immersion of the loop into a supermanifold. This approach provides a unifying description of Wilson loops preserving different sets of supercharges, and clarifies the flow between them. Moreover, it allows to exploit the powerful techniques of super- differential calculus for investigating their symmetries. As remarkable examples, we discuss supersymmetry and kappa-symmetry invariance

    Higher Derivative Corrections to R-charged Black Holes: Boundary Counterterms and the Mass-Charge Relation

    Get PDF
    We carry out the holographic renormalization of Einstein-Maxwell theory with curvature-squared corrections. In particular, we demonstrate how to construct the generalized Gibbons-Hawking surface term needed to ensure a perturbatively well-defined variational principle. This treatment ensures the absence of ghost degrees of freedom at the linearized perturbative order in the higher-derivative corrections. We use the holographically renormalized action to study the thermodynamics of R-charged black holes with higher derivatives and to investigate their mass to charge ratio in the extremal limit. In five dimensions, there seems to be a connection between the sign of the higher derivative couplings required to satisfy the weak gravity conjecture and that violating the shear viscosity to entropy bound. This is in turn related to possible constraints on the central charges of the dual CFT, in particular to the sign of c-a.Comment: 30 pages. v2: references added, some equations simplifie

    Higher Derivative Extension of 6D Chiral Gauged Supergravity

    Get PDF
    Six-dimensional (1,0) supersymmetric gauged Einstein-Maxwell supergravity is extended by the inclusion of a supersymmetric Riemann tensor squared invariant. Both the original model as well as the Riemann tensor squared invariant are formulated off-shell and consequently the total action is off-shell invariant without modification of the supersymmetry transformation rules. In this formulation, superconformal techniques, in which the dilaton Weyl multiplet plays a crucial role, are used. It is found that the gauging of the U(1) R-symmetry in the presence of the higher-order derivative terms does not modify the positive exponential in the dilaton potential. Moreover, the supersymmetric Minkowski(4) x S^2 compactification of the original model, without the higher-order derivatives, is remarkably left intact. It is shown that the model also admits non-supersymmetric vacuum solutions that are direct product spaces involving de Sitter spacetimes and negative curvature internal spaces.Comment: 32 pages; typos corrected, footnote in conclusions section adde

    On the Temperature Dependence of the Shear Viscosity and Holography

    Get PDF
    We examine the structure of the shear viscosity to entropy density ratio eta/s in holographic theories of gravity coupled to a scalar field, in the presence of higher derivative corrections. Thanks to a non-trivial scalar field profile, eta/s in this setup generically runs as a function of temperature. In particular, its temperature behavior is dictated by the shape of the scalar potential and of the scalar couplings to the higher derivative terms. We consider a number of dilatonic setups, but focus mostly on phenomenological models that are QCD-like. We determine the geometric conditions needed to identify local and global minima for eta/s as a function of temperature, which translate to restrictions on the signs and ranges of the higher derivative couplings. Finally, such restrictions lead to an holographic argument for the existence of a global minimum for eta/s in these models, at or above the deconfinement transition.Comment: references adde

    The Importance of Slow-roll Corrections During Multi-field Inflation

    Full text link
    We re-examine the importance of slow-roll corrections during the evolution of cosmological perturbations in models of multi-field inflation. We find that in many instances the presence of light degrees of freedom leads to situations in which next to leading order slow-roll corrections become significant. Examples where we expect such corrections to be crucial include models in which modes exit the Hubble radius while the inflationary trajectory undergoes an abrupt turn in field space, or during a phase transition. We illustrate this with two examples -- hybrid inflation and double quadratic inflation. Utilizing both analytic estimates and full numerical results, we find that corrections can be as large as 20%. Our results have implications for many existing models in the literature, as these corrections must be included to obtain accurate observational predictions -- particularly given the level of accuracy expected from CMB experiments such as PlanckComment: v1: 21 pages, 3 figures, 1 appendix. v2: clarifications to {\S}{\S}2.1, 3.1 and 4, {\S}5.3 added, references added, results unchanged. Matches published version in JCA
    corecore