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1 Introduction

Over the past decade holography has emerged as a valuable tool for gaining insight into the

physics of strongly coupled gauge theories. Top-down studies based on string/M-theory

setups have been met by a number of bottom-up constructions, with applications ranging

from the realm of quantum chromodynamics (QCD) to that of condensed matter systems.

Holographic techniques have been particularly useful for probing the hydrodynamic regime

of strongly interacting thermal field theories, a regime which is notoriously difficult to study

directly and — unlike thermodynamics — poses a challenge to lattice simulations.

Within this program, many efforts have been directed at better understanding the

dynamics of the strongly coupled QCD quark-gluon plasma (QGP), and in particular at

computing its transport coefficients. One of the most exciting results which has emerged

from the heavy ion program at RHIC — and now at LHC — is the observation that the hot

and dense nuclear matter produced in the experiments displays collective motion. In fact,

the QGP fireball created in off-central collisions is not azimuthally symmetric, but rather

shaped like an ellipse. As a result, the pressure gradients between its center and its edges
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vary with angle, giving rise to an anisotropic particle distribution. The matter formed in

the collisions then responds as a strongly coupled fluid to the differences in these pressure

gradients, displaying a collective flow which is well described by nearly ideal hydrodynamics

with a very small ratio of shear viscosity to entropy density η
s .

Experimentally, the flow pattern can be quantified by Fourier decomposing the parti-

cles’ angular distribution. In particular, it is the second Fourier component v2, the so-called

elliptic flow, which is the largest in non-central collisions and is the observable most directly

tied to the shear viscosity. Thus, bounds on η
s can be extracted from elliptic flow measure-

ments, with the most advanced analysis at the moment giving 4π η
s ≤ 2.5 [1]. Higher order

harmonics — initially neglected because they were assumed to be too small for symmetry

reasons — also play an important role in determining the shear viscosity (see section IV for

a more detailed discussion). We refer the reader to [2, 3] for some early references on the

RHIC results and the range of η
s , and to [4–7] for more recent ones including discussions

of the first LHC results.

A remarkable result that has emerged from holographic studies of strongly coupled

gauge theories has been the universality of the shear viscosity to entropy ratio [8, 9], which

was shown to take on the particularly simple form η
s = 1

4π in any gauge theory plasma with

an Einstein gravity dual description.1 Its order of magnitude agreement with RHIC (and

now LHC) data was one of the driving motivations behind the efforts to apply holography

to the transport properties of the QGP (see [11, 12] for recent reviews). It is by now well

understood that deviations from the universal result η
s = 1

4π (both below and above) are

generic once curvature corrections to the leading Einstein action are included.2 Moreover,

when there is another scale Λ̃ in the system in addition to temperature T , the viscosity

to entropy ratio typically runs as a function of T/Λ̃ in such higher derivative theories.

We should emphasize that this type of temperature flow for the shear viscosity arises in a

number of holographic constructions, from theories of higher derivatives in the presence of

a chemical potential [16–18] or non-trivial scalar field profiles3 [20, 21] and also to systems

with spatial anisotropy [10, 22–27].

The viscosity to entropy ratio is in fact known to be temperature dependent for a

variety of liquids and gases in nature (as well as for ultracold fermionic systems close to the

unitarity bound), exhibiting a minimum in the vicinity of a phase transition (see figure 1).

A similar behavior is expected [28] for η
s near the temperature T = Tc of the QCD phase

transition which separates hadronic matter from the QGP phase. In the hadronic phase

below Tc, the hadronic cross section decreases as the temperature is lowered, leading to an

increase in η
s [29, 30] (for an analysis of transport in the hadronic phase see e.g. [31]). On

the other hand, in the deconfined phase at temperatures well above Tc, asymptotic freedom

dictates that η
s should increase with temperature (the coupling between quarks and gluons

decreases logarithmically [32, 33]). From the behavior in these two opposite regimes, we

conclude that we should expect a minimum for η
s somewhere in the intermediate range.

1An exception is the case of anisotropic fluids, as first observed in [10].
2For reviews of the shear viscosity bound we refer the reader to [13–15].
3Dilatonic couplings to higher derivative terms in the context of η

s
have also been studied in [19].
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Figure 1. Schematic plots of the shear viscosity to entropy density ratio for a number of fluids in

nature. Tc denotes the critical temperature at the endpoint of the liquid-gas transition for water

and helium, the superfluid transition temperature for ultracold Fermi gases and the deconfinement

temperature for QCD. For the water and helium data (dotted lines) we refer the reader to [34].

The dashed curves are the expected theoretical curves for QCD (red) and ultracold Fermi gases

(green), from [30, 32] and [35, 36] respectively. The solid red square denotes the upper bound
η
s ∼ 2.5

(

1

4π

)

for the QCD quark gluon plasma found in [37], while the open red squares denote the

upper limits found in the lattice analysis of [66]. The dashed horizontal line is the universal ratio
η
s = 1

4π . Similar plots can be found in [12, 38].

A precise determination of the temperature behavior of transport coefficients such as η
s

is an important ingredient for understanding the dynamics of the strongly coupled medium

produced at LHC and RHIC, and may also help in finding the location of the critical point.

However, at the moment most hydrodynamical simulations of the QGP assume that η
s is a

constant, and therefore insensitive to temperature. The question of the possible relevance

of a temperature-dependent η
s on the collective flow of hadrons in heavy ion collisions has

been investigated in a number of studies [5, 39–41], which thus far have focused mostly on

qualitative effects. The results of [39] seem to indicate that at LHC energies elliptic flow

values are sensitive to the temperature behavior of η
s in the QGP phase, but insensitive to

it in the hadronic phase (with the results reversed at RHIC energies).

Motivated by the potential sensitivity of elliptic flow measurements to thermal varia-

tions of η
s at the energies probed by LHC, here we would like to initiate a systematic study

of the flow of the shear viscosity as a function of temperature in the context of holography.
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In this paper we will restrict our attention to theories with a vanishing chemical potential,

described simply by gravity coupled to a scalar field in the presence of higher derivative

corrections. Although we will not consider string theory embeddings of these backgrounds,

the higher derivative terms we examine are generically expected to show up as corrections

to the two-derivative Einstein-scalar action viewed as an effective field theory, and in par-

ticular to most effective actions derived from string theory. Moreover, our result for η
s

in (2.18) is completely generic and applicable to any top-down model which contains a

truncation to an Einstein-scalar theory.

Thanks to the presence of a non-trivial scalar field profile, the higher derivative terms

in our theory will generically generate a temperature flow for the shear viscosity, as already

expected from [20, 21]. In particular, the temperature dependence of η
s will be dictated by

the shape of the scalar potential and of the couplings of the scalar to the higher derivative

interactions. Given an explicit expression for η
s in terms of the latter, it is then straight-

forward to discuss the existence of local minima for η
s as a function of temperature. As

we will see, for potentials which confine quarks at zero temperature it is also possible to

determine criteria for the existence of global minima. In particular, the requirements that η
s

approaches its high-temperature value from below (dictated from asymptotic freedom) and

that the zero-temperature theory is confining, are enough to fix the signs (and ranges) of

the couplings of the higher derivative terms, and guarantees the existence of a global mini-

mum for η
s , at or above Tc. Thus, we have been able to give a holographic argument for the

existence of a minimum for η
s in this class of models, along with a geometric interpretation

for it, complementing existing field-theoretic4 arguments [42]. Finally, although our analy-

sis will be more general, we will focus mostly on ‘phenomenological’ models engineered to

reproduce some of the qualitative and quantitative features of QCD.

The rest of the paper is organized as follows. Section II describes our setup and out-

lines how to obtain η
s for higher derivative corrections to dilatonic black brane solutions.

Our main results are presented in section III, where we discuss the temperature depen-

dence of η
s in theories with a non-trivial scalar field profile, first by considering a toy model

consisting of an exponential scalar potential, then focusing on QCD-like phenomenological

models. We also comment on qualitative features of η
s in theories that are confining, and

identify generic criteria for the existence of a minimum for η
s as a function of temperature

in such setups. We summarize our results in section IV, where we also comment on the

challenges involved with determining more precisely the structure of η
s , and in particular

how it flows with temperature.

2 Setup

In order to generate a non-trivial temperature dependence for η
s at zero chemical potential

we will consider backgrounds with a scalar field coupled to a higher derivative theory of

4The authors of [42] tie a lower bound on the shear viscosity to the validity of second-order hydrody-

namics.
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gravity. The action we consider is of the form

S =
1

16πG5

∫

d5x
√−g

[

R− 2(∇Φ)2 + V (Φ) + ℓ2β G(Φ)RµνρσR
µνρσ

]

, (2.1)

under the assumption that the coupling β of the higher derivative terms is perturbatively

small and G(Φ) is an arbitrary regular function of Φ. For most of the paper we will focus

on the exponential case, G(Φ) = eγΦ, however most of the analysis is straightforwardly

generalized to arbitrary G(Φ). The dilaton potential V (Φ) is assumed to have either a

minimum at some value Φ = Φ0 or a run-away behavior V (Φ) → const as Φ → −∞
(as in [43, 44]). Although in the above we have only considered the higher derivative

correction RµνρσR
µνρσ, this is in fact the only term which contributes to η

s at this order

in the derivative expansion. The computation of η
s in theories with higher derivatives has

been studied in great detail, and here we review briefly only the relevant aspects.5

2.1 Extracting the shear viscosity to entropy ratio

In the hydrodynamic approximation to near-equilibrium dynamics, the transport coeffi-

cients of a finite temperature plasma can be extracted in a number of ways. The most

straightforward method for computing the shear viscosity is based on the Kubo relation

η = − lim
ω→0

1

ω
ImGR

xy,xy(ω,
~k = 0) , (2.2)

which reduces η to the low frequency and zero momentum limits of the stress tensor’s

retarded Green’s function. Using the holographic dictionary, the relevant two-point corre-

lation function of the shear stress tensor Txy can be read off from the effective action of

a shear metric fluctuation h y
x (t, u) ∼

∫

d4k φk(u) e
−iωt+ikz, where we use u to denote the

radial direction in the bulk. Expanding (2.1) to quadratic order in the modes φk, one finds

the by now standard6 form of the effective action for the shear fluctuation,

Seff ∼
∫

d4k
(2π)4

du
[

A(u)φ′′kφ−k +B(u)φ′kφ
′

−k + C(u)φ′kφ−k +

+ D(u)φkφ−k + E(u)φ′′kφ
′′

−k + F (u)φ′′kφ
′

−k

]

+ SGH , (2.3)

where the coefficients A(u), B(u), . . . , F (u) encode information about the background so-

lution, and SGH is the generalized Gibbons-Hawking boundary term.

After a number of subtle manipulations, the shear viscosity can be extracted from (2.3)

and reduces [17] to the compact expression

η =
1

8πG5

[

√

−guu
gtt

(

A−B +
F ′

2

)

+

(

E

(
√

−guu
gtt

)

′
) ′
] ∣

∣

∣

∣

∣

u=uh

, (2.4)

5For reviews of higher derivative corrections to η

s
and further details of the computation we refer inter-

ested readers to [13–15] and references therein.
6See [45] for the original derivation, in the context of α′ 3 corrections.
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evaluated at the horizon radius uh, showing that it is given entirely in terms of horizon

data.7 Finally, the entropy density s is easily found by dividing by the (infinite) black

brane volume Wald’s entropy formula,

S = −2π

∫

Σ
d3x

√
−h δL

δRµνρσ
ǫµνǫρσ , (2.6)

where h is the induced metric on the horizon cross section Σ, and ǫµν the binormal to Σ.

From our discussion above it is evident that η
s can be expressed entirely in terms of

near-horizon data. Moreover, when working perturbatively in the coupling β of the higher

derivative terms, η
s can be determined purely from the background solution of the two-

derivative theory.8 These two facts allow us to write η
s in terms of the parameters of a

generic near-horizon non-extremal black brane expansion. Parametrizing the black-brane

solution to the leading order two-derivative action by

ds2 = −a2(u) dt2 + c2(u) du2 + b2(u) d~x2 , Φ = ϕ(u) , (2.7)

with the choice b2(u) = 1/u, we can write down its near-horizon expansion by assuming a

first order zero in gtt and a corresponding first order pole in guu,

a(u)2 = a0(1− u) + a1(1− u)2 + a2(1− u)3 + . . . ,

b(u)2 = b0(1 + (1− u) + . . .) ,

c(u)2 = c0(1− u)−1 + c1 + c2(1− u) + . . . ,

ϕ(u) = ϕh + ϕ1(1− u) + ϕ2(1− u)2 + . . . . (2.8)

The shear viscosity to entropy density ratio is then of the simple form [20]

η

s
=

1

4π

(

1− β ℓ2

c0
(G(ϕh) + 2ϕ1G

′(ϕh) )

)

, (2.9)

and is only sensitive to the parameters {c0, ϕh, ϕ1} of the near-horizon expansions (2.8).

This concludes the derivation of η
s for the theory described by (2.1). In the remainder of

this section we will discuss the class of dilatonic black brane solutions we are interested in.

2.2 Shear viscosity of dilatonic brane solutions

As we mentioned above, the backreaction of the higher derivative terms on the background

solution does not affect η
s to linear order in perturbative parameter β, which is the order

7The Kubo formula (2.2) can be shown [17, 46] to be equivalent to

η = lim
u,ω→0

Πω,k=0(u)

iω φω,k=0(u)
, (2.5)

where Πk is the radial-momentum conjugate to φk. In the low frequency limit (as long as the boundary

theory is spatially isotropic) the quantity inside the limit does not depend on the radial coordinate. As a

result, it can be evaluated at an arbitrary value of u, and in particular at the horizon [17, 46].
8Because of the universality of η

s
, O(β) corrections to the background geometry lead to order O(β2)

corrections to η

s
.
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that we are interested in here. Thus, we are going to focus on black brane solutions to

models described by the two-derivative action

S =
1

16πG5

∫

d5x
√−g

[

R− 2(∇Φ)2 + V (Φ)
]

, (2.10)

and neglect curvature corrections. Although analytic black brane solutions are not known

for generic choices of the potential, to extract η
s knowledge of the near-horizon behavior

is enough, given our prescription (2.9). For this calculation we find it more convenient to

introduce a new radial coordinate r and parametrize the black brane ansatz as

ds2 = f−1(r) dr2 + e2A(r)
(

d~x2 − f(r) dt2
)

, Φ = Φ(r) . (2.11)

From the expression (2.9) it is clear that we will need to calculate the near horizon values

of the metric functions c(u) and ϕ(u) in (2.7), and the relationship between T and ϕh,

which will make the temperature dependence of (2.9) explicit. We will instead calculate

the near horizon values of the functions Φ and f above and perform a change of variables

at the end to express (2.9) in terms of physical quantities.

For this study, it turns out to be particularly convenient to adopt the phase variables

method developed in [47], which we briefly review here and in appendix A. This is a quick

and efficient way to obtain the thermodynamic properties of the diatonic branes. In place

of solving the full 5th order set of Einstein’s equations, one only needs to solve two first

order differential equations for the so-called “phase variables” that are defined from the

metric functions as

X(Φ) ≡ ζ

4

Φ′

A′
, Y (Φ) ≡ 1

4

f ′

f A′
. (2.12)

The constant ζ depends on the normalization of the scalar kinetic term in (2.1) and di-

mensionality. In our case it is fixed to be ζ =
√

8/3. Clearly, these functions are invariant

under reparametrizations of the radial coordinate. Physically, one can interpret the bound-

ary values of these variables as the thermodynamic energy and the enthalpy of the system.

Furthermore, their horizon expansion is completely determined in terms of the dilation

potential V (Φh) and V
′(Φh) by the requirement of regularity. The behavior of the metric

functions near the horizon is also determined in terms of these two quantities. The details

of the calculation are explained in appendix A and here we present only the final results.

We parametrize the near-horizon expansion of the metric and scalar field of the black

brane ansatz (2.11) at r = rh as follows,

A(r) = Ah +A1(r − rh) + · · · (2.13)

f(r) = f1(r − rh) + · · · (2.14)

Φ(r) = Φh +Φ1(r − rh) + · · · . (2.15)

We can now make use of the phase variables method to obtain explicit expressions9 for

f1, A1 and Φ1 in terms of the physical parameters in the system,

A1 = −C
ℓ

S
1
3

T
V (Φh) ,

9In particular, we use eqs. (A.2), (A.3), (A.7), (A.14) and (A.16) in appendix A.
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Φ1 =
3C

4ℓ

S
1
3

T
V ′(Φh) ,

f1 = −Mp(4π)
4
3
T

S
1
3

, (2.16)

with C given by (A.15). As can be seen from (2.9), the only near-horizon parameters that

are needed for extracting η
s are c0, the leading order coefficient in the expansion of c(u),

and ϕh and ϕ1, the first two terms in the scalar field expansion. By performing a change

of radial coordinate we can relate the two near horizon expansions, and write {ϕh, ϕ1, c0}
in terms of {A1, f1,Φh,Φ1} as

ϕh = Φh , ϕ1 =
1

2A1
Φ1 , c0 =

1

2f1A1
. (2.17)

We now have all the ingredients needed to apply the near-horizon η
s prescription (2.9)

to the generic black brane expansion (2.16)–(2.17) we just found. As expected, we find that

the deviation from the universal result η
s = 1

4π is controlled by the shape of the potential,

the horizon value of the scalar field as well as the coupling β of the higher derivative term,

η

s
=

1

4π

[

1 +
2

3
ℓ2β

(

−G(Φh)V (Φh) +
3

4
G′(Φh)V

′(Φh)

)]

, (2.18)

and for the specific choice of G(Φ) = eγΦ, which we will focus on for the most of this paper,

η

s
=

1

4π

[

1 +
2

3
ℓ2β

(

−V (Φh) +
3

4
γV ′(Φh)

)

eγΦh

]

. (2.19)

We emphasize that this expression is completely general, and applies to any asymptotically

AdS solution to (2.1). Moreover, we can already anticipate that η
s will generically be tem-

perature dependent, thanks to the presence of a non-trivial scalar field profile, as already

seen in [20, 21]. To better understand the meaning of (2.19), we recall that the flow of η
s as

a function of temperature is mirrored, in the bulk, by the change of the near-horizon geom-

etry of the solution, as the horizon radius varies. For the class of holographic constructions

we are considering here, it is the scalar field profile which is responsible for introducing

an additional scale Λ̃ in the theory (in addition to temperature), and thus breaking the

conformal symmetry away from the UV. As a result, we should think of Φh, the horizon

value of the dilaton, as tracking the temperature of the system.10 Thus, (2.19) can be

expressed entirely in terms of temperature by finding the precise relationship between Φh

and T . As usual, the latter can be determined from the metric by demanding regularity

at the horizon. We review this is appendix A.

Finally, we would like to point out that in the special case of a non-dynamical scalar

field and a constant potential, we recover the standard result for an AdS black brane in

pure gravity with curvature corrections [48, 49], which is well-known to give rise to a con-

stant correction to the universal η
s = 1

4π result. More interestingly, there are special choices

of non-trivial V (Φ) for which the temperature dependence disappears, as we will see more

explicitly below.

10More precisely, it will track the dependence on T/Λ̃, where Λ̃ is the new scale in the system.
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3 Results

In this section we examine the temperature dependence of η
s in various holographic se-

tups. We start by looking at a toy model consisting of a simple exponential potential,

and continue with more ‘phenomenological’ constructions designed to mimic QCD and in

particular the physics of the strongly coupled quark gluon plasma. We will conclude by

remarking on generic, qualitative features of η
s , including a discussion of the existence of

minima as a function of temperature.

3.1 A warm-up example: Chamblin-Reall black brane

As a warm-up example, we will work out the Chamblin-Reall (CR) black-hole solution [50]

by making use of the phase variables formalism. The CR brane is a solution to (2.10) with

the single-exponential potential

V (Φ) =
V0
ℓ2
eαΦ, (3.1)

where V0 is a positive dimensionless constant and ℓ defines a length-scale in the background.

We choose α > 0. With this convention,11 in the zero temperature geometry the scalar

approaches Φ → −∞ on the boundary and Φ → +∞ in the deep interior. In the black-brane

geometry, which is what we are ultimately interested in, Φ runs from −∞ on the boundary

to a constant value Φh at the horizon. Thus, anywhere outside the horizon Φ < Φh.

Although the potential (3.1) does not admit an AdS minimum as the scalar field

approaches the boundary, the CR brane — for a special value of α — can be obtained

from a dimensional reduction of pure gravity plus a (negative) cosmological constant in six

dimensions. In fact our action (2.1), with the potential choice (3.1), can be obtained via a

U(1) reduction from the following six-dimensional mother theory

L = R+ 2Λ6 + βRµνρσR
µνρσ , (3.2)

for the special case12 of γ = −α = −
√

2/3 (see appendix B for details of the reduction).

This special parameter choice — for which the CR solution can be uplifted to a pure AdS

black brane in six dimensions — will play an interesting role in the behavior of η
s , as we

will see later in this section. For now, however, we will keep {α, γ} completely arbitrary.

The CR solution corresponds to the fixed-point of the X-equation (A.5) with

X(Φ) = x0 ≡ − α

2ζ
, (3.3)

where recall ζ =
√

8/3. Substituting this into the Y-equation (A.6), the solution becomes

Y (Φ) =
1− x20

eκ(Φ−Φh) − 1
, κ ≡ ζ

x0
(1− x20). (3.4)

From (A.8) and (A.9) one can then reconstruct the full background as a function of Φ,

A(Φ) = Ac +
ζ

4x0
(Φ− Φc) , f(Φ) = 1− eκ(Φhs−Φ) , (3.5)

11In the two-derivative theory, the sign of α can be altered by the transformation Φ → −Φ.
12More general dimensional reductions [51] may yield additional values of γ, α.
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where Φc corresponds to a cutoff surface, as explained in the appendix. One can now

use (A.12) and (A.13) to obtain the entropy and temperature as a function of Φh,

T (Φh) = T0 e
ζ

4x0
(1−4x2

0)Φh , S(Φh) = S0 e
3ζ
4x0

Φh , (3.6)

where we defined

T0 ≡
V0

12πℓ
e
Ac−

ζ

4x0
(1+4x2

0)Φc , S0 ≡ S(0) =
e
3(Ac−

ζ
4x0

Φc)

4GN
. (3.7)

The temperature dependence of the entropy can be read off from (3.6),

S(T ) ∝ T
3

1−4x20 . (3.8)

Combined with the first law of thermodynamics, this fixes the temperature scaling for the

free energy of the system

F ∝ −T
4−4x20
1−4x20 . (3.9)

In both equations (3.8) and (3.9) the proportionality constant is positive. Notice that

the free energy F is always negative definite and never crosses zero — there is no phase

transition in the system. Moreover, the requirement that the specific heat of the system

Cv = TdS/dT is positive definite (for thermal stability) constrains the value of x0, resulting

in x20 < 1/4. Using (3.3) this can be translated into a condition on α, the exponent in the

dilaton potential (3.1),

0 < α <

√

8

3
. (3.10)

Together with this condition, equations (3.8) and (3.9) essentially determine all of the

thermodynamic properties of the system. The fact that — to work out the thermodynam-

ics associated with this background — we only needed to solve two first order differential

equations, (A.5) and (A.6), and not the full system of Einstein’s equations, demonstrates

explicitly the advantage of using the phase variables method.

We are now ready to calculate the shear viscosity of the CR black-brane solution.

Although we are particularly interested in the case of γ = −α = −
√

2/3, for which the CR

solution comes from a U(1) reduction of a pure AdS black brane in six dimensions, here

we write down a ‘formal’13 expression for η
s for arbitrary values of α and γ. Using (3.1)

and the corresponding expressions for the temperature and entropy (3.6), one finds

η

s
=

1

4π



1− 2

3
βV0

(

1− 3γα

4

)(

T

T0

)

−6α(γ+α)

8−3α2



 . (3.11)

Recall from (3.10) that α2 < 8/3, and therefore the sign of the power of the temperature

in (3.11) depends on whether γ < −α or not. In either case, η
s is a monotonic function of

13Although our near-horizon η

s
prescription was obtained specifically for geometries that are asymptoti-

cally AdS, it may be possible to generalize it to backgrounds that contain asymptotically conformally flat ra-

dial slices, by appropriately taking into account holographic renormalization in such backgrounds as in [52].
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the temperature, and whether it decreases or increases relative to 1
4π depends on the sign

of β as well as the range of γ. Furthermore, if we require the zero temperature limit to

approach the universal 1
4π result, we must impose γ < −α.

Interestingly, the temperature dependence of the shear viscosity to entropy ratio dis-

appears in the two special cases:

1. V ∝ e
4
3γ

Φ
. In this case not only the T -dependence disappears, but also η

s resumes its

universal value 1
4π , despite the presence of higher derivative corrections.

2. V ∝ e−γΦ.For the special case of α =
√

2/3, η
s takes exactly the same value as in

the six-dimensional AdS Schwarzschild black hole. This fact can be understood by

reducing the AdS6 Schwarzschild solution on S1. It inherits the scale symmetry of

the parent solution in six-dimensions, hence leading to absence of the T -dependence.

See appendix B for details of this calculation. Similar statements can be made for

reductions from (d+1+n)-dimensions on an n-torus as in [53], which for d = 4 would

yield α = −γ =
√

8n
3(n+3) .

It is possible that the cancelation of the correction to 1
4π in the former case may also be

understood in terms of a dimensional reduction of a parent theory, but this time without

a cosmological constant.14 At the moment we don’t have a more complete understanding

of this case (see however [54]).

3.2 Improved holographic QCD

3.2.1 ihQCD background

Next, we turn to the phenomenological models discussed in [43, 44, 53] and focus in partic-

ular on the setup of [47, 55]. These are phenomenological constructions in the sense that

the potential V (Φ) is determined purely by field-theoretic requirements, and is designed

to capture some of the features of QCD while remaining reasonably tractable. In fact, in

these models the dilatonic scalar can be identified15 with the running ’t Hooft coupling,

λ = Ncg
2
YM ∼ eΦ, and the scalar potential V (Φ) is directly related to the β-function of the

system, giving a holographic definition of the latter in terms of the background geometry.

Thanks to this identification one can extract the UV and IR asymptotics of the potential

from the small λ and large λ expansions of β(λ).

In the UV (small λ), the input for the behavior of V (Φ) comes from perturbative QCD,

i.e. from the requirement of asymptotic freedom with a logarithmic running coupling. More

generally, one assumes that there is a dimension-four operator TrF 2 in the spectrum, dual

to the dilaton in the bulk. The fact that the operator TrF 2 is marginal in the UV then

translates into the statement that the UV geometry is asymptotically AdS5, with logarith-

mic corrections. The details of the UV expansion for these types of backgrounds can be

found in [43].

On the other hand, in the IR (large λ) the potential is fixed by demanding linear

quark confinement. On the bulk side this is implemented by adding a probe string in the

14We thank Blaise Gouteraux for a very interesting discussion on this point.
15Up to a multiplicative factor which does not affect physical observables.
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geometry — dual to a Wilson-loop — and obtaining the quark-anti quark potential from the

asymptotics of the string embedding in the IR [44, 56, 57]. One finds that linear confinement

requires the dilaton potential to have an asymptotic expansion in the IR of the form

V (Φ) → eQΦ ΦP + · · · , (3.12)

where we show only the leading large Φ behavior,16 with
√

8/3 ≤ Q ≤
√

16/3 and P > 0.

The parameter choice which fits the available zero and finite temperature data best turns

out to be Q =
√

8/3 and P = 1/2 (see [58]). This particular choice is also well motivated

by the fact that it exhibits desirable qualitative features such as a linear glueball spec-

trum, screening of the magnetic quarks [44], and more recently the scaling behavior of the

interaction measure in temperature [59].17

More specifically, defining λ = exp(
√

3/2Φ), an example of a potential with the correct

UV and IR asymptotics is of the form

ℓ2V (λ)

12
= 1 + λ+ V1λ

4
3

[

log(1 + V2λ
4
3 + V3λ

2)
]1/2

, (3.13)

where the value at λ = 0 sets the UV AdS scale ℓ. The remaining parameters in the

potential (3.13) can be fixed by matching the scheme-independent β-function coefficients

of large N QCD, the lowest glue ball mass and the latent heat at Tc [58]. Although we

will analyze explicitly the model with the potential given in (3.13), we emphasize that our

qualitative results will only depend on the fact that V → const in the UV and that it is a

confining potential in the IR.

3.2.2 Thermodynamics

Before discussing the temperature dependence of the shear viscosity in this setup, we would

like to summarize the basic thermodynamic properties of the system. These models exhibit

a first order confinement-deconfinement transition at some critical temperature T = Tc.

Below Tc, the dominant phase is the confined phase that corresponds to a thermal graviton

gas background. On the other hand, above Tc one has the deconfined phase corresponding

to a big black-hole background. We note that there also exists a third phase above a certain

temperature Tmin, where Tmin < Tc, which is sometimes referred to as a small black-hole.

While the horizon of the latter is deep in the interior, the big black hole has its horizon

closer to the boundary.

The presence of the two types of black-holes is apparent from figure 2(a), which shows

T as a function of the horizon location. It is also clear from the figure that there are no

black hole solutions for T < Tmin. Although the small black-hole is always sub-dominant

and has a negative specific heat, its presence will turn out to be important to understand

certain properties of η
s in the following discussion. Figure 2(b) shows the variation of the

free-energy density F as a function of the horizon radius. Finally, by combining figure 2(a)

16The difference between this definition and the original one given in [43] arises from different normal-

izations of the dilaton kinetic term.
17See [60] and references therein for a criticism of ihQCD models.
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Big black holes Small black Holes

0 rmin
rh

Tmin

T

(a)

Big black holes Small black Holes

rmin
rh

F

(b)

Figure 2. Typical plots of the black-hole temperature (a) and free energy (b) as a function of the

horizon position rh, in a confining background. The temperature features a minimum at rmin, which

separates the large black-hole from the small black-hole branches. The locus given by F (rc) = 0,

with rc < rmin, corresponds to the phase transition point, T = Tc.

and figure 2(b) one can parametrically solve for the free energy as a function of tempera-

ture. The result is sketched in figure 3, which also summarizes the phase structure of the

system as the temperature is varied.

3.2.3 Shear viscosity of ihQCD

Given the general formula (2.19) and the dilaton potential (3.13), it is immediate to obtain
η
s as a function of the scalar at the horizon. However, physically one is interested in having
η
s as a function of temperature, rather than Φh. Conversion from the latter to temperature

is done by using either (A.12) or (A.16), after solving Einstein’s equations numerically for

the background functions. Figure 4 shows the results of this calculation, for the choice of

potential (3.13) which gives the best fit to the available lattice data [58]. We note that the

behavior of T as a function of the horizon location is indeed of the form of figure 2(a), with

the minimum separating the big black hole (on the left) from the small black hole branch

(on the right).
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Fmin

Tmin

λ h

λ h

F

T

B

Tc

S

Figure 3. Black hole free energy as a function of temperature. The lines “B” and “S” denote

the big and the small black-hole solutions, respectively. At T = Tmin the free energy of the two

solutions is the same. The free energy of the thermal gas phase is set to F = 0. The direction

along which the horizon location increases — which is represent by λh, the horizon value of the

dilaton — is also shown in the figure.

Combining T (λh) with the analytic expression (2.19) and the potential (3.13), one can

now plot η
s as a function of T/Tc, for a choice of the parameters β and γ. Unfortunately, we

were unable to constrain the possible range of {β, γ} with the available data, but instead

chose representative values (recall however that we want β to be small enough so that

the curvature corrections in (2.1) remain perturbative). Depending on the choice of the

couplings {β, γ}, η
s will then display different qualitative behaviors.

Two interesting fiducial cases — which are representative of the behavior of the viscos-

ity in a large portion of the phase space — correspond to taking β > 0, 0 < γ <
√

2/3 and

β < 0, γ < −
√

8/3. In the first case, shown in figure 5(a), η
s displays a local minimum as a

function of T which, for the parameter choices made there, appears around T ≈ 1.8Tc. In

the high temperature limit η
s approaches the universal 1

4π value from below. The behavior

in the second case, depicted in figure 5(b), is quite distinct. There η
s increases monotoni-

cally with temperature above Tc, increasing indefinitely as T → ∞, just as in perturbative

QCD. There is no local minimum appearing in the range T > Tc, and therefore η
s acquires

its minimum value at T = Tc. In both cases, we know from field theory studies of the

hadronic phase that η
s increases monotonically for T < Tc, as one probes lower and lower

temperatures. Thus, in figure 5(b) we expect T = Tc to correspond to the global minimum

of the function η
s (T ).
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Λc Λm

0.1 0.2 0.3 0.4 0.5
Λh

1

2

3

4

5

6

7

T

Tc

Figure 4. Temperature as a function of λh = e
√

3/2Φh in the ihQCD background. The labels λc
and λm refer to the value of λh at the critical and minimum temperature, respectively.

1

4 Π
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T

Tc
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0.080
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Η

S

2 4 6 8 10

T

Tc

0.65

0.70

0.75

0.80

0.85

0.90

Η

S

(a) (b)

Figure 5. Plots of η
s for theories with the scalar potential (3.13) and parameters chosen to give

the best fit to lattice data [58]. In (a) we have taken β = 0.1 and γ =
√

3/2, while in (b) β = −0.01

and γ = 6/5
√

3/2. Figure (a) shows that η
s has a small minimum near T ≈ 1.8Tc. We emphasize

that the size of the variation in η
s can be reduced without changing its qualitative behavior, by

taking β sufficiently small.

In these two examples, the qualitative behavior of the viscosity is different not only near

Tc, but also in the high-T regime. We should note, however, that our holographic results

can only be trusted up to a certain Tmax, above which the perturbative higher derivative
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expansion breaks down.18 In particular, we won’t be able to trust an arbitrarily large devi-

ation from the universal 1
4π result. Other interesting qualitative behaviors are also possible,

in the remaining range of {β, γ}. For example, a mixture of the two aforementioned cases

arises when β < 0 and −
√

8/3 < γ < 0. In this case η
s exhibits a local minimum above Tc

just like in the first case above, but its high-T behavior is the same as that of the second

case. We will provide a more detailed derivation of the different qualitative features of η
s

as a function of temperature in the next section, where we will also discuss the boundaries

of the various regions of phase space which lead to the distinct η
s behaviors.

3.3 Qualitative features of the shear viscosity for confining backgrounds

We would like to conclude this section by exploring some of the qualitative features of

the temperature dependence of η
s from a more general point of view. For concreteness we

will restrict our attention to dilaton potentials that exhibit confining IR asymptotics (as

Φ → ∞) as in the ihQCD case of the previous section,

V → V∞
ℓ2

eQΦΦP + · · · (3.14)

and AdS asymptotics in the UV. Furthermore, we will consider the following two possibil-

ities for the behavior of the potential in the UV:

a. V → 12
ℓ2

+ vewΦ + · · · , as Φ → −∞

b. V → 12
ℓ2

− 1
2m

2Φ2 + · · · as Φ → 0 .

The first case (under the assumption that w > 0 to ensure AdS boundary conditions) is

precisely that of ihQCD-type backgrounds, where the dilaton is massless and corresponds

to a marginal deformation by the dimension-four operator TrF 2. The second case describes

a massive dilaton of mass m, and corresponds to a deformation of the UV conformal theory

by an operator of scale dimension19

∆ = 2

(

1 +

√

1 +
m2ℓ2

16

)

. (3.15)

Thus, relevant deformations correspond to m2 < 0, and the Breitenlohner-Freedman (BF)

bound is given by m2ℓ2 = −16.

In holographic constructions of the type we are considering, the flow of η
s as a function

of temperature results from the way in which the near-horizon geometry changes as the

horizon radius varies (it comes from sampling the phase space of the possible solutions to

18A potentially useful way of characterizing this break-down is by requiring ℓ2βeγΦR ≪ 1, and evaluating

this at the horizon. This yields the relation 5
3
ℓ2βeγΦHV (ΦH) ≪ 1, from which one can compute Tmax,

corresponding to the point at which the correction becomes O(1). However, making this relation more

precise is beyond the scope of this paper.
19Note that the normalization of the kinetic term for our scalar differs by a factor of four from that of

more standard AdS/CFT conventions, leading to a slightly different relation between the scalar mass and

the conformal dimension of the dual operator.
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the theory). In our setup, the horizon value Φh of the scalar field tracks the tempera-

ture of the system. High temperatures then map to Φh → −∞ in the a) type potentials,

and Φh → 0 in the b) type potentials we have just discussed, whereas ‘low’ temperatures

correspond to the region just above T ∼ Tc. We emphasize that the geometry which is

relevant in this entire temperature range T & Tc is that of the big black-hole discussed in

section 3.2.2. Thus, the high-T behavior of η
s will correspond to the large horizon limit

of the big black-hole geometry. Below Tc, the thermal gas phase dominates, and we won’t

attempt to compute η
s directly in that regime (we will discuss the subtleties involved with

such a calculation towards the end of this section). Instead, we will extract information

about the structure of η
s — and in particular any minima it has as a function of temperature

— by exploiting the existence of both the big and small black-hole branches. Thus, even

though the small black-hole is not of direct physical interest — it is not thermodynamically

favored — it is still (indirectly) useful for probing η
s .

We start by working out the viscosity to entropy ratio in the regime which corresponds

to the small black-hole branch. In particular, we work in the Φh ≫ 1 limit which describes

an extremely small horizon radius (the far right of figure 4). In this regime, we can extract
η
s by plugging the IR potential (3.14) into our general formula (2.19), which gives

η

s
=

1

4π
+ β

V∞
6π

(

3γQ

4
− 1

)

e(γ+Q)ΦhΦP
h + · · · , (3.16)

where we are omitting terms that are subleading in the large Φ limit. Given that the small

black-hole is not thermodynamically favored, we emphasize that the only crucial piece of

information we need to extract from this expression is whether η
s increases or decreases

as Φh grows larger and the small black-hole shrinks. We can see from (3.16) that as Φh

grows, the correction to η
s tends to become20 large and positive for {β > 0, γ > 4/3Q} and

{β < 0, γ < 4/3Q}, while it tends into the large and negative direction in the opposite case

(assuming in all these cases that γ +Q > 0). On the other hand, when γ +Q < 0 the sign

of the exponential term changes, and the correction term vanishes in the extreme small

black hole limit, from above (below) when the product β
(

3γQ
4 − 1

)

is positive (negative).

We note that in all of this analysis β is assumed to be perturbatively small,21 |β| ≪ 1.

Of course when the higher derivative correction (3.16) becomes ‘too large,’ the result can no

longer be trusted — for consistency one would have to include not only the four-derivative

term in the action (2.1), but all other higher derivative corrections as well. However, our

expression for η
s above will still be useful for the following two reasons. First, in many phe-

nomenological potentials of the type we are interested in, the leading IR behavior (3.14)

doesn’t necessarily set in at a very high value of Φh. Thus, in these cases there will be a re-

gion of validity for (3.16), which can be made larger and larger by choosing β (or γ) smaller.

Secondly, as it will become clear below, what we are really after is not the precise value

of (3.16), but rather whether η
s tends upwards or downwards on the small black-hole branch.

20Analysis of the sub-leading terms shows that it becomes large and positive even when γ = 4/3Q.
21To ensure the absence of additional degrees of freedom associated with the higher derivative corrections

in (2.1).
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Next, we move on to discussing the high-temperature behavior of η
s realized on the

big black-hole branch,22 which maps to Φh → −∞ and Φh → 0 for type a) and type b)

potentials, respectively. We analyze the two types of UV asymptotics for the potential

separately. In case a) one finds, for negative and large Φh (the black hole horizon is close

to the runaway AdS region)

η

s
→ 1

4π

[

1− 8βeγΦh + · · ·
]

. (3.17)

Thus, in the high-T regime η
s attains its universal 1

4π value, for γ > 0. Note that it ap-

proaches this value from above (below) for β < 0 (β > 0). On the other hand, for γ < 0, η
s

tends upwards (downwards) for β < 0 (β > 0). We note that in the γ < 0 case the result

is only trustable up to a certain (negative) value of Φh, above which other higher order

derivative corrections should also be taken into account. Thus, the expression for η
s is only

reliable up to a certain Tmax.

For the b) type potentials, i.e. with a true AdS minimum at Φ = 0, one finds instead

η

s
→ 1

4π
(1− 8β)− βγ

8π

(

16 +m2ℓ2
)

Φh + · · · , Φh → 0 . (3.18)

First of all, we learn that η
s takes the value one expects23 from a curvature-squared cor-

rection (with no dilatonic scalar coupling) in five dimensions [48]. Furthermore, recalling

that the BF bound is m2ℓ2 > −16, we see that η
s approaches its constant high-T value from

above (below) for βγ < 0 (βγ > 0).

There are a number of generic qualitative statements one can make about the running

of η
s with temperature for these confining backgrounds:

Divergence of d
dT

η

s
. First, it is known [47] that for any potential that confines quarks

at zero temperature, there exists a temperature Tmin (below Tc) in the finite temperature

theory where the small and big black-hole branches meet, as shown in figure 2a). This

implies that dΦh

dT diverges at this point and that η
s is double-valued above Tmin. As a result,

although η
s itself is finite at Tmin, by the chain rule, its derivative d

dT
η
s = dΦh

dT
d

dΦh

η
s will

diverge there.24 This is a generic feature of η
s that holds for any holographic background

corresponding to a large N confining gauge theory at zero temperature.

This behavior is exemplified in figures 7 and 8, which show that the divergence oc-

curs at the meeting point of the big and the small black-hole branches. We should note

that it is the thermal gas, and not one of the black-hole solutions, that is the thermody-

namically preferred solution at this temperature and so the divergence in d
dT

η
s does not

actually correspond to a physical property of the shear viscosity. Even though it cannot

22We are now probing the near-horizon geometry of the big black-hole solution, in the large horizon limit.
23This conclusion is independent of the sign of γ, because of the Φh → 0 limit.
24One may worry that a diverging d

dT

η

s
might reflect a regime that can’t be trusted. However, we

can keep corrections to η

s
arbitrarily small by appropriately tuning the perturbative coupling β. More

importantly, the divergence of the derivative of η

s
at Tmin is a result of the double-valued nature of Φh(T )

— the quantity d
dΦh

η

s
itself remains finite and small. Thus, given that we are only interested in qualitative

features of η

s
— whether it increases or decreases near Tmin, and the sign of its slope there — the divergence

of d
dT

η

s
is not expected to present a problem.
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be considered a physical characteristic of η
s , knowledge of the divergence of d

dT
η
s at Tmin

will prove useful in analyzing the functional properties of η
s . In particular, it will provide

an holographic explanation for why η
s assumes its minimum value at the transition point

T = Tc for confining gauge theories, as we will see shortly.

There is also a particular case in which the divergence occurs on the border of a ther-

modynamically dominant branch and, as such, does correspond to a physical property of
η
s . As described in [47] and [61], a second order confinement-deconfinement transition

corresponds to the case when Tmin and Tc coincide. In this situation there is no small

black-hole branch, and the derivative of η
s generically diverges precisely at the transition

point T = Tc. More precisely, dT
dΦ diverges at T = Tc and therefore one generically expects

that d
dT

η
s also diverges, as long as d

dΦh

η
s remains finite at that point. This latter condition

should be analyzed separately.

As a concrete example of this case, we take the generic backgrounds considered in [61],

which exhibit a second (or higher) order Hawking-Page transition at a finite temperature

Tc at which Φh → ∞. In order to find the behavior of η
s around the transition point, one

should first make sure that the perturbative approximation in the higher derivative expan-

sion is valid as Φh → ∞. The scalar potential in the theories of [61] has the asymptotic

behavior shown in (3.14) with P = 0 and Q =
√

8/3, together with exponentially decaying

sub-leading terms as Φ → ∞,

V (Φ) → e

√

8
3
Φ (

1 + C e−κΦ
)

, κ > 0 . (3.19)

Here C > 0 is a positive constant which does not play any role in the following discussion,

and the value of κ determines the order of the continuous transition.

From the η
s expression (3.16) we see that we can only make reliable statements about

the behavior of the shear viscosity as T → Tc (Φh → ∞) in the particular case γ < −Q =

−
√

8/3 (otherwise our perturbative approximation is guaranteed to break down). For this

choice of parameters one then recovers the universal result η
s → 1

4π as T → Tc. It is straight-

forward to work out the behavior of the derivative of η
s by combining d

dΦh

η
s and dT

dΦ . The first

can be calculated straightforwardly from (3.16). The latter follows from the sub-leading

analysis performed in [61], which gives the following relation between temperature and Φh,

T (Φh) → Tc + C̃e−κΦh , Φh → ∞ , (3.20)

where C̃ > 0. Finally, combining these ingredients one obtains,

d

dT

η

s
∝ e

(γ+
√

8
3
+κ)Φh , Φh → ∞ , (3.21)

where the sign of the proportionality constant is positive (negative) for β < 0 (β > 0). Thus

we arrive at the conclusion that, although η/s remains finite and reaches its universal 1
4π

value at the continuous transition, its derivative d
dT

η
s diverges for−

√

8/3 > γ > −
√

8/3−κ,
and it vanishes for γ < −

√

8/3−κ. We emphasize again that our perturbative approxima-

tion breaks down for γ > −
√

8/3, in which case one cannot reliably determine the behavior

of η
s at T = Tc. This concludes our aside on the special case in which the divergence occurs

on the border of a thermodynamically dominant branch. In the rest of the paper we will

assume that Tc 6= Tmin.
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Conditions for local minima. Our general expression (2.19) makes the discussion of

the presence or absence of a minimum for η
s straightforward. Local minima are defined by

the following two conditions,25

d

dΦh

η

s
= 0 ,

d2

dΦ2
h

η

s
> 0 , (3.22)

which, when re-instating the generic higher derivative coupling G(Φ), can be translated into

analyticity conditions on G(Φ) and the dilaton potential V (Φ) using (2.19). In particular,

extrema of η
s are determined by the locii Φh at which

(

3

4
G ′(Φ)V ′(Φh)−G(Φ)V (Φ)

)

′ ∣

∣

∣

Φ=Φh

= 0 , (3.23)

an expression which is valid for arbitrary potentials (which allow for AdS asymptotics)

and scalar couplings G, and not just the particular setup of this section. In terms of

G(Φ) = eγΦ, the condition becomes

3

4
γV ′′(Φh) +

(

3

4
γ2 − 1

)

V ′(Φh)− γV (Φh) = 0 . (3.24)

Thus, in order for η
s to have an extremum at a certain temperature, a necessary condition26

is that the dilaton potential V (Φ) possesses at least one solution to equation (3.23). Clearly,

for such a solution to correspond to a minimum one should further ensure that the second

derivative is positive there. These two conditions provide a simple criterion for the existence

of extrema, given an arbitrary scalar field profile in the class of theories (2.1).

Presence of a global minimum. The discussion in the previous paragraph concerns

general conditions for the existence of local minima. However, we can also ask what are

the conditions for the existence of a global minimum, given a confining potential with the

IR and UV asymptotics described above. To answer this question, it turns out to be useful

to recall the behavior of η
s in the two opposite limits of an extremely small and extremely

large black-hole. We will restrict our attention to the case in which the function η
s (T ) is

monotonic on the small black-hole branch, an assumption which is satisfied in all of the

holographic backgrounds we consider in this paper. Our analysis will also make use of

the fact that the derivative of η
s approaches ±∞ as T → Tmin along the two black-hole

branches, as we discussed above. We will divide the discussion into two cases:

1. Discontinuous case. Here we discuss the situation in which η
s displays a global

minimum appearing exactly at T = Tc. If η
s is a monotonically increasing function

of temperature on the entire big black-hole branch, reaching its maximum value as

T → ∞ from below, then clearly it will reach a minimum value (on the big black-hole

branch) at T = Tc, where the big black hole solution ceases to be thermodynamically

favored. To work out the behavior of η
s in the range T < Tc one would then need to

25Without loss of generality we assume that dT/dΦh is finite at these minima.
26This is also sufficient provided that dT/dΦh is finite at this point.

– 20 –



J
H
E
P
0
8
(
2
0
1
2
)
1
6
7

Big black-hole 

Thermal gas 

  

s 

T
c
 T

max
 T 

Figure 6. A cartoon of the behavior of η
s in the big black-hole phase (to the right of Tc) and in

the thermal gas phase (for T < Tc) for the case where the big black-hole phase is monotonically

increasing above Tc. We denote by Tmax the temperature above which the correction to η
s is no

longer perturbative, and our approximation breaks down.

switch to the thermal gas solution. Calculating η
s directly in this regime is technically

very challenging. However, as outlined in the introduction, there are qualitative field

theory arguments which tell us that η
s should start increasing again below Tc, as the

temperature continues to drop. Thus, we conclude that in this case T = Tc corre-

sponds to a global minimum for η
s . This behavior is shown schematically in figure 6,

from which it is also clear that the derivative of η
s is discontinuous at Tc.

Graphically it is clear that, in order for this to happen, on the big black-hole branch
η
s must approach its high-T value from below, and furthermore its derivative on this

branch must approach d
dT

η
s → +∞ at Tmin, where the big and the small black-hole

branches meet. Given our assumption that η
s is a monotonic function of T on the small

black-hole branch, in order to satisfy the second criterion it suffices that η
s decreases

as Φh gets larger (in the extreme Φh ≫ 1 limit) on the small black-hole branch. By ex-

amining (3.16) and (3.17) we see that this requires27 either of the following two cases:

[i.] β > 0, 0 < γ <
4

3Q
, (3.25)

[ii.] β < 0, γ < −Q . (3.26)

We plot these two cases schematically in figure 7(a) and 7(b). Figure 7(a) shows the

behavior of η
s on the big (B) and small (S) black-hole branches for a potential whose

27Note that we need the derivative of η

s
to be positive definite in the asymptotic high-T region (on the

big black-hole branch). Since dT/dΦh is negative definite on the big black-hole branch, we see from (3.17)

that this requires βγ > 0.
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Case a) 

(a)
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Case a) 

Case b) 
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T
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4! 

(b)

Figure 7. (a) A cartoon of the case when (3.25) is satisfied, for the type a) potential. (b) A cartoon

of the case when (3.26) is satisfied, for the type a) and type b) potentials labeled respectively by

“case a” and “case b.” In both figures Tm denotes the temperature where the small (S) and the big

(B) black-hole branches meet and Tc denotes the temperature of the confinement-deconfinement

transition. The high temperature value of the viscosity to entropy ratio is denoted by ηUV

s .

UV asymptotics are described by case a). In figure 7(b) on the other hand we include

both cases a) and b).
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Case a) 

Case b) 

T T
c
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UV
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(b)

Figure 8. (a) A cartoon of the case when (3.27) is satisfied. (b) A cartoon of the case when (3.28) is

satisfied. ηUV

s denotes the high-T value of η
s , Tm denotes the minimum temperature where the small

(S) and the big (B) black-hole branches meet and Tc denotes the temperature of the confinement-

deconfinement transition. In figure (b) we plot both the type a) and type b) potentials labelled by

“case a” and “case b” respectively.

2. Continuous case. Here the η
s curve has a global minimum on the big black-hole

branch at some temperature Tη satisfying Tη > Tc. Note that at that point, η
s and
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all of its derivatives are continuous. For this to happen, clearly η
s must increase as

the temperature is raised above Tη, approaching its high-T value from below. More

importantly, η
s must also increase below Tη, as the temperature gets closer and closer

to Tmin. The latter condition translates into the requirement that the derivative on

the big black hole branch obeys d
dT

η
s → −∞ at Tmin. Finally, it suffices that η

s tends

upwards on the small black-hole branch,28 in the Φh ≫ 1 limit. Investigation of (3.16)

and (3.17) reveals that one needs

[i.] β > 0, γ >
4

3Q
, (3.27)

[ii.] β < 0, −Q < γ < 0 . (3.28)

We provide schematic drawings of these two cases in figure 8(a) and 8(b). Note also

that (3.27) corresponds to the case plotted in figure 5(a). Of course one should also in-

corporate the fact that, in confining theories, the thermodynamically preferred back-

ground changes below Tc. Thus, in order to be able to observe a global minimum lo-

cated at some temperature Tη, one should ensure that Tη > Tc, as shown in figure 8(a).

The four cases depicted in figures 7(a), 7(b), 8(a) and 8(b) cover most of the physically in-

teresting situations. Qualitatively distinct behavior (for example a maximum rather than a

minimum) for η
s arises in the other ranges of β and γ, but we will not discuss it here. Finally,

we should note that allowing for a more general scalar coupling G(Φ) to the higher deriva-

tive term (i.e. of the racetrack-type) would modify — and potentially significantly compli-

cate — the analysis of the existence of a global minimum. We will not attempt this here.

3.3.1 The thermal gas phase

We would like to close this section by discussing briefly the main difficulties involved with

calculating η
s on the thermal gas background which describes temperatures below the de-

confinement transition. We emphasize again that in our analysis we did not explicitly

compute η
s below Tc, but rather used knowledge of its behavior in the hadronic phase. The

main difficulties involved with a direct computation for T < Tc stem mostly from the need

to consider 1/N2 corrections.

To see why this is so, note that the thermal gas solution has no horizon, hence the

O(N2) contribution to the entropy that would come from evaluating the action on the

classical saddle29 vanishes. However, the finite temperature in the background generates

thermal fluctuations of the graviton gas. Thus, the entropy in this case should be calculated

by computing the determinant of fluctuations around the classical thermal gas saddle, and

as such it is 1/N2 suppressed with respect to the O(N2) black-hole contribution. As a

result, the entropy of the thermal gas is stg = O(1).

Now, let’s move on to the calculation of η on the thermal gas background, which can

be done by considering fluctuations of the transverse traceless gravitons — in particular,

28Recall that we are assuming that η

s
is monotonic there.

29Note the identification 1/G5 ∝ N2 in front of the action. Thus, whenever the on-shell action on a

classical saddle is non-vanishing, automatically all of the thermal functions are proportional to N2.
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η
s can be related to the flux of transverse gravitons through the horizon, which is propor-

tional to e3AhN2. On the other hand, the small black-hole background asymptotes to the

(Lorentzian) thermal gas in the limit of vanishing horizon radius. This tells us that the

leading O(N2) contribution to η also vanishes, in the same way in which the O(N2) contri-

bution to the entropy of the thermal gas vanished. In order to find the finite contribution

one has to consider Witten diagrams with quantum loops, which lead to ηtg ∝ O(1). Thus,

although η
s in the thermal gas is of the same order as that for any black-hole background, in

order to calculate it one needs to compute the 1/N2 contributions to both η and s. Such a

calculation would involve computing one-loop diagrams in supergravity. This would naively

require knowing the spectrum of all supergravity fields which could run in the loops30 and

as such, knowing a genuine string theory embedding of any particular model. This one-loop

calculation appears to be a difficult task and we don’t attempt it here.

4 Discussion

Before summarizing our results for the temperature dependence of the shear viscosity in

holographic models, we would first like to discuss several properties of η/s in the QCD

plasma. Although the viscosity to entropy ratio in the QGP phase is expected to be very

small and roughly comparable to 1
4π , its precise value is still largely uncertain. The collec-

tive flow observed at RHIC and LHC is analyzed by performing a Fourier decomposition of

the particles’ angular distribution, whose Fourier coefficients vn are sensitive to transverse

momentum pT . Restrictions on the possible range of η
s are then extracted from the data

either by comparing the momentum-dependent elliptic flow coefficient v2(pT ) with results

obtained from viscous hydrodynamical calculations,31 or by fitting the centrality depen-

dence of the average pT integrated elliptic flow. Both approaches yield bounds on η
s which

are somewhat close to the universal 1
4π value, with the analysis of [1] giving 4π η

s ≤ 2.5.

Uncertainties of η

s
. A number of challenges, both theoretical and experimental, have to

be overcome in order to determine η
s more precisely. Uncertainties on the experimental side

come from non-flow correlations introduced, for example, by jets and resonance decays. On

the theoretical side, uncertainties are due to various assumptions on the choice of initial

conditions, initial state pressure gradients and event-by-event fluctuations. As an example,

it was realized only recently that the assumption that higher order harmonics were negligi-

ble was a poor one — the shape of the fireball can fluctuate from one event to the next, even

at a fixed impact parameter. The resulting irregular pressure gradients are not symmetric

with respect to the reaction plane, and can in fact induce higher harmonic flow patterns.

The elliptic flow direction and magnitude can also fluctuate event-by-event. Interestingly,

the measurement of higher harmonics can play an important role in reducing the degen-

eracy between the shear viscosity and initial conditions, and appears to give tighter limits

30Note, however, that one-loop contributions to hydrodynamic long-time tails do not require a detailed

understanding of the spectrum of supergravity fields [62]. Perhaps a similar simplification occurs for one-

loop contributions to η/s.
31More precisely, one needs a ‘hybrid’ code which combines viscous hydrodynamics of the QGP phase

with a realistic model of the late hadronic stage (see e.g. [63]).
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on η
s . In fact, a combined analysis [64] of elliptic and triangular flow coefficients (v2 and

v3, respectively) in Pb + Pb collisions at LHC was shown to favor a small shear viscosity
η
s ≃ 0.08, disfavoring the considerably larger value of η

s ∼ 0.2 (we refer the reader to [7]

for a more detailed discussion of these issues). Although none of the models currently used

describes perfectly all experimental flow data, the expectation is that — with the new high

precision data coming from LHC — it will be possible to cut down on such uncertainties

and arrive at a precision measurement of the transport properties of the QGP.

The temperature dependence of η

s
. Another important issue for disentangling the

physics of the QGP is that of the possible temperature dependence of η
s , which is the main

focus of our analysis. Although most hydrodynamical simulations of the QGP assume a

constant value for η
s , a number of studies — mostly qualitative in nature — have begun to

examine the possible relevance of temperature in LHC and RHIC heavy ion collisions [5, 39–

41]. First results for the shear and bulk viscosity obtained via lattice QCD simulations were

put forth in [65, 66], where it was shown that η
s remains close to its universal 1

4π value for a

range of temperatures not far above Tc. On the other hand, kinetic theory results for QCD

at weak coupling [32, 33] imply η
s > 1, for the QCD running coupling constant in the range

αs . 0.25. Elliptic flow values at LHC energies may be sensitive to the temperature behav-

ior of η
s in the QGP phase, although insensitive to it in the hadronic phase [39]. Moreover,

it was argued in [28] that η
s should have a minimum at (or near) the QCD phase transi-

tion. This is expected because η
s increases with decreasing temperature in the hadronic

phase [29, 30], while asymptotic freedom dictates that it increases with temperature in the

deconfined phase — thus leading to at least one minima somewhere in the intermediate re-

gion. An interesting study of shear and bulk viscosities for a finite temperature, pure gluon

plasma was performed in [41], where the authors used a phenomenological, quasi-particle

model based on an effective kinetic theory description. At large temperatures, the results

of [41] reproduce parametrically the transport behavior observed in perturbative QCD cal-

culations. As the non-perturbative regime is approached, their analysis is in agreement with

lattice QCD results, with a decrease of η
s with temperature and a minimum at T & Tc. In-

dependently of the assumptions behind particular choices of model and simulation schemes,

it is clear that a more systematic understanding of the temperature dependence of η
s is an

important ingredient towards a better descriptions of the dynamics of the QGP.

4.1 Summary of results

The aim of this paper was to initiate a systematic study of the temperature dependence of

the shear viscosity in the strongly coupled QGP (and gauge theory plasma more generally),

in the framework of the holographic gauge/gravity duality. We were largely motivated by

the potential sensitivity of elliptic flow measurements to thermal variations of η
s , but were

also interested in gaining further insight into the geometric interpretation of a non-trivial

temperature flow for the shear viscosity. We restricted our attention to theories of gravity

coupled to a scalar field in the presence of higher derivative corrections,

L = R− 2(∇Φ)2 + V (Φ) + β G(Φ)RµνρσR
µνρσ , (4.1)
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under the assumption that the coupling β is perturbatively small.32 Higher order curvature

corrections are well-known to push η
s away from its universal 1

4π value. Moreover, once they

are coupled to a non-trivial scalar field profile, they lead generically to a temperature flow

for η
s , as already seen in [21] and emphasized in [20].

The correction to η
s — which is parametrized entirely in terms of horizon data — can

be expressed in terms of the potential and the horizon value Φh of the scalar field, and

for (4.1) takes the relatively simple form (see section II for details of the derivation)

η

s
=

1

4π

[

1 +
2

3
β

(

−G(Φh)V (Φh) +
3

4
G ′(Φh)V

′(Φh)

)]

. (4.2)

Note that thanks to this expression, determining the presence of local minima for η
s is

entirely straightforward. In particular, extrema are found by minimizing (4.2) with respect

to33 Φh, and therefore correspond to the zeros of the relation (3.23). We emphasize that

such a condition is rather generic, given the broad assumptions behind (4.2) — essentially

the requirement of AdS asymptotics.

Armed with the general expression (4.2), we have analyzed a number of holographic

setups. For the majority of our analysis, we have restricted our attention to the special

case of G(Φ) = eγΦ, for which the viscosity to entropy ratio reduces to

η

s
=

1

4π

[

1 +
2

3
β

(

−V (Φh) +
3

4
γ V ′(Φh)

)

eγΦh

]

. (4.3)

In this class of theories, the (horizon) quantity Φh tracks the temperature of the system.

As a result, the behavior of η
s as a function of temperature is controlled by the scalar field

coupling to the curvature corrections — parametrized here by γ and β — as well as by the

specific functional form of the potential.

As a simple consistency check of our result, we note that for the case of a non-dynamical

scalar our expression (4.3) reduces to a constant and reproduces the standard result for

an AdS black-brane in pure gravity with curvature-squared terms. On the other hand,

an analytically tractable example which gives rise to non-trivial temperature dependence

is that of a single exponential potential, V ∝ eαΦ. Black-brane solutions in this system

have a temperature of the form T ∝ e
−

4
3α

(

1− 3α2

8

)

Φh . With this choice of potential, our

expression (4.3) implies a monotonic temperature flow for η
s , whose precise structure is

shown in (3.11) and is dictated by the range and signs of β and γ. Interestingly, when

γ = −α the viscosity to entropy ratio takes on a constant value again, with no temper-

ature dependence. In particular, for the specific choice γ = −α =
√

2/3 the model can

be obtained via a U(1) dimensional reduction of a six-dimensional theory of pure gravity

with a negative cosmological constant, in the presence of R2 corrections. As expected, our

correction to η
s in this case reduces to that for a pure AdS6 black brane, providing a rather

non-trivial check of our result (4.3). The absence of temperature dependence in this case

is then a simple consequence of the fact that the five-dimensional theory inherits the scale

invariance of the parent six-dimensional one (see also the discussion in [54]).

32From now on we will set the AdS length scale ℓ equal to one.
33Assuming that dT/dΦh is finite.
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The behavior of η
s becomes more interesting — and more relevant to the physics of

the QGP — for theories which undergo a confinement-deconfinement transition at some

critical temperature Tc. In our analysis we have worked mostly with potentials constructed

‘phenomenologically’ by requiring their IR and UV asymptotics to match with expectations

from QCD, as in the case of the Improved Holographic QCD (ihQCD) model discussed in

section 3.2. However, we emphasize that a number of our results hold more broadly, and

can be easily generalized. Plots of the temperature dependence of η
s in the ihQCD model

for fiducial values of {β, γ} are shown in figure 5. On the left, we note the presence of a

small minimum slightly above Tc, above which η
s approaches 1

4π . The behavior for T < Tc
was not computed directly, but rather extrapolated using the fact that η

s is expected to

increase in the hadronic phase, as the temperature is lowered. The figure on the right,

on the other hand, exhibits a minimum exactly at T = Tc, with
η
s growing indefinitely as

the temperature is raised. A cartoon of the same type of behavior — expected to describe

more general settings — is shown in figure 6.

For theories which confine quarks at zero temperature, the thermodynamic structure

of the corresponding finite-temperature theory plays an interesting role in determining the

behavior of η
s , and enables one to make generic qualitative statements about its temperature

flow. In this class of models, the geometry which is favored thermodynamically for T > Tc
is that of a big black hole, while below Tc the dominant phase corresponds to a thermal gas.

However, a third solution appears for T > Tmin (with Tmin < Tc), which describes a small

black-hole solution. For the ihQCD model, the existence of the two black-hole branches

can be seen in figure 4, with the minimum separating the big black hole (on the left) from

the small one (on the right). Although the small black-hole is never thermodynamically

favored — and is therefore not of any direct physical relevance — it can still be useful

for probing η
s in the physically relevant regime T > Tc. In fact, the coexistence of the

small and big black-hole solutions for T > Tmin implies that η
s is double-valued there, and

that its derivative diverges at the point T = Tmin where the two branches meet. These

features can be seen for example in figure 7(a). By examining the rough dependence of η
s

on temperature on the two branches and the sign of d
dT

η
s as Tmin is approached, one can

then reconstruct whether η
s exhibits a minimum in the T & Tc range.

Following this strategy, in section IIIC we have derived a set of geometric conditions

for the existence of a global minimum for η
s in this class of models.34 We have chosen

to work with dilatonic potentials which have confining IR asymptotics and exhibit two

distinct behaviors in the UV, both consistent with AdS asymptotics — the type a) and

type b) potentials corresponding, respectively, to a massless and massive scalar. The re-

quirement — from asymptotic freedom — that η
s approaches its high-T value from below

fixes the signs and ranges of the higher derivative couplings β and γ. Combined with the

requirement that the zero-temperature theory is confining, it guarantees the existence of

a global minimum for η
s at or above the critical temperature, in a certain portion of the

phase space. Furthermore, whether the (global) minimum is located exactly at Tc or above

it can be determined by looking at the sign of the divergence of d
dT

η
s at Tmin, the point

where the big and small black hole branches meet.

34Under the (mild) assumption that η

s
is monotonic on the small black-hole branch.
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In section IIIC we have provided a geometric classification of these two cases, which

we emphasize are physically distinct. The parameter space of the ‘discontinuous’ case,

describing a global minimum exactly at Tc, is summarized in (3.25) and (3.26), and shown

schematically in figure 7. The ‘continuous’ case, with a global minimum at some temper-

ature T > Tc, is described instead in (3.27) and (3.28), and shown in figure 8. We note

that both cases have βγ > 0 (for the precise range of γ we refer the reader to section

IIIC). The two types of UV asymptotics, cases a) and b), are also shown in the figures.

The high-temperature behavior of η
s , and in particular whether it approaches a constant

value or increases indefinitely with temperature, is determined by the values and ranges of

the β, γ parameters. Another generic result of our analysis is that when the confinement-

deconfinement phase transition is second (or higher) order the derivative d
dT

η
s diverges or

vanishes at Tc, depending on the value of the parameter γ, while η/s remains finite and

approaches its universal 1
4π value.35

One should note, however, that the holographic demonstration of the existence of a

global minimum in confining backgrounds is incomplete. In particular, it is desirable to find

an independent holographic reason for the requirement that βγ should be positive, needed

for the presence of the global minimum in the continuous/discontinous cases discussed

above. In fact, although we always insisted on keeping the correction to η
s perturbatively

small (by appropriately turning down β), we relied on the fact that d
dT

η
s diverges near

Tmin. Thus, one may worry that any conclusion drawn from using d
dT

η
s in a regime where

it is very large might not be valid. While this is a fair concern, we should note that it is
dΦh

dT which diverges, with d
dΦh

η
s remaining finite (and small). For completeness, it would

also be desirable to perform the analogous η
s calculation in the hadronic phase (T < Tc),

and derive holographically the monotonically decreasing behavior of η
s expected from field

theory. Finally, we should caution the reader that a more generic higher derivative scalar

coupling G(Φ) would give rise to a more complicated structure for η
s (i.e. imagine allowing

for racetrack-type terms) and might invalidate some of our arguments for the presence of

a global minimum. Clearly, our analysis would have to be re-evaluated in such situations.

Regardless, we would like to emphasize that — for a certain class of potentials, and for

simple higher derivative couplings of the formG ∝ eγΦ —we have translated the issue of the

existence of a minimum for η
s into a geometric one, and identified the holographic conditions

which would guarantee its presence, complementing the field-theoretic arguments of [42].

In order for our analysis to be of more direct relevance to studies of the QGP, it is crucial

to find ways to place restrictions on the allowed ranges of the couplings β and γ, whether

with theory or experiment. This would cut down on the large phase space for the tempera-

ture behavior of η
s , and eliminate some of the model dependence inherent in holographic se-

tups of this type — in particular when higher derivative terms are present. At the moment,

however, this is very challenging. In the future, it might be feasible to constrain models

by examining the effects of higher derivative corrections on the remaining transport coeffi-

cients (including those of second order hydrodynamics), and then simultaneously fitting to

the available data. While this should be possible in principle, at the moment it presents a

35This result is valid as long as the perturbative approximation can be trusted. See section IIIC for details.
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serious challenge — the bulk viscosity flows with temperature already without the need for

higher derivative terms, and very little is currently known from holography about second

order transport coefficients in the presence of higher derivative corrections. On the other

hand, it may be possible to restrict the values of the parameters with more phenomenolog-

ical considerations. As an example, at least in principle we can fit the UV behavior in the

type a) potentials we discussed to that predicted by perturbative QCD, which would fix

the values of both couplings β and γ. However, we should keep in mind that our analysis is

not valid to arbitrarily high temperatures (it breaks down when the higher derivative inter-

actions are no longer perturbative), and therefore any direct comparison with UV physics

should be taken with a grain of salt. We leave these questions open for future work.
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A The method of phase variables

For the study of dilatonic black hole solutions, it turns out to be particularly convenient

to adopt the phase variables method developed in [47], which we briefly review here. With

the black brane ansatz

ds2 = f−1(r) dr2 + e2A(r)
(

d~x2 − f(r) dt2
)

, Φ = Φ(r) , (A.1)

the Einstein and dilaton equations of motion that follow from the action (2.10) can be put

in the following simple form of five first-order equations,

dA

dr
= −1

ℓ
e−ζ

∫ Φ
0 X(t)dt, (A.2)

dΦ

dr
= − 4

ℓ ζ
X(Φ) e−ζ

∫ Φ
0 X(t)dt, (A.3)

1

f

df

dr
= −4

ℓ
Y (Φ) e−ζ

∫ Φ
0 X(t)dt , (A.4)
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and

dX

dΦ
= −ζ (1−X2 + Y )

(

1 +
1

2ζ

1

X

d log V

dΦ

)

, (A.5)

dY

dΦ
= −ζ (1−X2 + Y )

Y

X
, (A.6)

where ζ =
√

8
3 and we have introduced the phase variables

X(Φ) ≡ ζ

4

Φ′

A′
, Y (Φ) ≡ 1

4

f ′

f A′
, (A.7)

which are invariant under radial coordinate transformations [47]. Note that the metric

functions A and f can be expressed in terms of X and Y by integrating directly (A.7),

A(Φ) = A(Φc) +
ζ

4

∫ Φ

Φc

dΦ̃

X
, (A.8)

f(Φ) = exp

(

ζ

∫ Φ

0

Y

X
dΦ̃

)

, (A.9)

where Φc denotes a cut-off surface that plays the role of the regularized UV boundary.36

The advantage of expressing Einstein’s equations in terms of the phase variables {X,Y }
should now be apparent — the system has been reduced to a coupled set of first order

equations,37 (A.5) and (A.6), which greatly simplifies the task of finding analytic solutions.

Moreover, all thermodynamic properties of the system are completely determined by knowl-

edge of the two degrees of freedom X and Y as a function of Φ. In fact, in terms of the hori-

zon value Φh of the dilaton, the temperature and the entropy of the black brane are given by

T (Φh) =
ℓ

12π
eA(Φh) V (Φh) e

ζ
∫ Φh
0 X(Φ) dΦ , (A.12)

S =
1

4GN
e3A(Φh) . (A.13)

Combining these two expressions we find a simple relation between the phase variable X

and the scalar potential,

e−ζ
∫ Φh
0 X(Φ) dΦ = C

S
1
3

T
V (Φh), (A.14)

36At the boundary we require f → 1, which fixes its dependence on Φc. Moreover, as shown in [47], the

physical observables in this system only depend on X and Y and are independent of Φc.
37In order to solve (A.5) and (A.6) one has to specify a single boundary condition for each of the equations.

After demanding a regular horizon of the form

f(Φ) = const.× (Φh − Φ) near Φ ≈ Φh, (A.10)

inspection of the equations (A.9) and (A.6) shows that the remaining integration constant is completely

fixed, and near Φ ≈ Φh one must require

X(Φ) = −
1

2ζ

V ′(Φh)

V (Φh)
+O(Φh − Φ) , Y (Φ) = −

X(Φh)

ζ(Φh − Φ)
+O(1) . (A.11)
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where the proportionality constant C is given by

C =
ℓ(4π)−

4
3

3Mp
, (A.15)

and we have traded Newton’s constant for the Planck mass, M3
p = (16πGN )−1. Finally,

the temperature can be directly related to the horizon expansion of the blackness function

as follows,

4π T = −f ′(rh) eA(rh) . (A.16)

These relations greatly facilitate the study of black brane solutions to the model described

by (2.1), as we show in the main text.

B Chamblin-Reall from U(1) reduction

In this appendix we expand upon the particular case of the Chamblin-Reall black brane.

The special case γ = −α, for which η
s shows no temperature dependence, can be realized as

a solution of a dimensionally reduced theory of pure gravity plus a negative cosmological

constant in six dimensions. As such this solution can be uplifted to a pure AdS black brane

in six-dimensions, thus explaining the temperature independent form for η
s .

To see this in more detail, we start from the following Lagrangian density in d + 1

space-time dimensions,

L = R+ 2Λd+1 + βRµνρσR
µνρσ , (B.1)

and perform a circle reduction by decomposing the metric as

ds2d+1 = e2σφds2d + e2δφdψ2 , (B.2)

where φ is a scalar.38 The dimensionally reduced theory is then given by

Ld = R− σ2(d− 1)(d− 2)(∂φ)2 + 2Λd+1e
2σφ + βe−2σφ

[

RαβγδRαβγδ + . . .
]

, (B.3)

where we fixed δ = −(d − 2)σ to ensure a canonical Einstein term, and omitted higher

derivative terms involving Rµν and φ, since they do not affect η
s . Notice that, as expected,

we have generated a dilatonic coupling to the Riemann-squared term. However — unlike

in (2.1), where the parameter γ is free — here the dilatonic coupling is completely fixed in

terms of α. Thus, we have recovered the model of (2.1) with the CR potential (3.1), but

only for the special parameter choice γ = −α.
We can now compute η

s for the dimensionally reduced theory. Restricting to d = 5 and

rescaling the dilaton so that its kinetic term agrees with (2.1), the lagrangian becomes

L5 = R− 2(∂φ)2 + 2Λ6e
√

2/3φ + βe−
√

2/3φ
[

RαβγδRαβγδ + . . .
]

. (B.4)

38Note that we have consistently fixed the Kaluza-Klein gauge field to vanish.
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Comparing this to our action (2.1), we see that we have generated a scalar coupling

∼ eγΦRµνρσR
µνρσ with γ = −

√

2/3. The black-brane solution to the two-derivative theory

is given in [67],

ds2 = e2A(−f(r)dt2 + d~x2) +
dr2

f(r)
, (B.5)

eA = r4, (B.6)

f(r) = 1−
(rh
r

)15
, (B.7)

e−
√

2/3φ =
Λ6r

2

90
, (B.8)

and has the following near horizon expansion

f(r) =
15

rh
(r − rh) + . . . ,

A(r) = ln r4h +
4

rh
(r − rh) + . . . ,

φ(r) = φh −
√
6

rh
(r − rh) + . . . . (B.9)

Plugging this near horizon expansion into our solution for η
s and taking Λ6 = 10/ℓ2 we

arrive at the following result
η

s
=

1

4π
[1− 20β] . (B.10)

This is precisely the result expected for an AdS-Schwarzschild black hole in six-

dimensions [48]. This is expected since, as we have shown, this specific Einstein-dilaton

system in 5-dimensions was simply a dimensional reduction of a 6-dimensional theory

containing only gravity and a cosmological constant. In fact, the dilaton solution presented

may be explicitly uplifted to an AdS-Schwarzschild black hole in six-dimensions [67].

While we have focused on a circle reduction from six-dimensions, similar statements

can be made for generic n-torus reductions to five-dimensions as in [53], resulting in

Chamblin-Reall theories with α = −γ =
√

8n
3(n+3) .

Open Access. This article is distributed under the terms of the Creative Commons
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