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1 Introduction

Over the past decade holography has emerged as a valuable tool for gaining insight into the
physics of strongly coupled gauge theories. Top-down studies based on string/M-theory
setups have been met by a number of bottom-up constructions, with applications ranging
from the realm of quantum chromodynamics (QCD) to that of condensed matter systems.
Holographic techniques have been particularly useful for probing the hydrodynamic regime
of strongly interacting thermal field theories, a regime which is notoriously difficult to study
directly and — unlike thermodynamics — poses a challenge to lattice simulations.
Within this program, many efforts have been directed at better understanding the
dynamics of the strongly coupled QCD quark-gluon plasma (QGP), and in particular at
computing its transport coefficients. One of the most exciting results which has emerged
from the heavy ion program at RHIC — and now at LHC — is the observation that the hot
and dense nuclear matter produced in the experiments displays collective motion. In fact,
the QGP fireball created in off-central collisions is not azimuthally symmetric, but rather
shaped like an ellipse. As a result, the pressure gradients between its center and its edges



vary with angle, giving rise to an anisotropic particle distribution. The matter formed in
the collisions then responds as a strongly coupled fluid to the differences in these pressure
gradients, displaying a collective flow which is well described by nearly ideal hydrodynamics
with a very small ratio of shear viscosity to entropy density 2.

Experimentally, the flow pattern can be quantified by Fourier decomposing the parti-
cles’ angular distribution. In particular, it is the second Fourier component vs, the so-called

elliptic flow, which is the largest in non-central collisions and is the observable most directly
n
S
ments, with the most advanced analysis at the moment giving 47 7 < 2.5 [1]. Higher order

tied to the shear viscosity. Thus, bounds on * can be extracted from elliptic flow measure-
harmonics — initially neglected because they were assumed to be too small for symmetry
reasons — also play an important role in determining the shear viscosity (see section IV for
a more detailed discussion). We refer the reader to [2, 3] for some early references on the
RHIC results and the range of 2, and to [4-7] for more recent ones including discussions
of the first LHC results.

A remarkable result that has emerged from holographic studies of strongly coupled
gauge theories has been the universality of the shear viscosity to entropy ratio [8, 9], which
was shown to take on the particularly simple form 2 = ﬁ in any gauge theory plasma with
an Einstein gravity dual description.! Its order of magnitude agreement with RHIC (and
now LHC) data was one of the driving motivations behind the efforts to apply holography

to the transport properties of the QGP (see [11, 12] for recent reviews). It is by now well
1
4
generic once curvature corrections to the leading Einstein action are included.? Moreover,

understood that deviations from the universal result 7 = ;= (both below and above) are
when there is another scale A in the system in addition to temperature T, the viscosity
to entropy ratio typically runs as a function of T/f\ in such higher derivative theories.
We should emphasize that this type of temperature flow for the shear viscosity arises in a
number of holographic constructions, from theories of higher derivatives in the presence of
a chemical potential [16-18] or non-trivial scalar field profiles® [20, 21] and also to systems
with spatial anisotropy [10, 22—-27].

The viscosity to entropy ratio is in fact known to be temperature dependent for a
variety of liquids and gases in nature (as well as for ultracold fermionic systems close to the
unitarity bound), exhibiting a minimum in the vicinity of a phase transition (see figure 1).
A similar behavior is expected [28] for ? near the temperature 7' = T, of the QCD phase
transition which separates hadronic matter from the QGP phase. In the hadronic phase
below T, the hadronic cross section decreases as the temperature is lowered, leading to an
increase in I [29, 30] (for an analysis of transport in the hadronic phase see e.g. [31]). On
the other hand, in the deconfined phase at temperatures well above T, asymptotic freedom
dictates that ? should increase with temperature (the coupling between quarks and gluons
decreases logarithmically [32, 33]). From the behavior in these two opposite regimes, we
conclude that we should expect a minimum for 7 somewhere in the intermediate range.

! An exception is the case of anisotropic fluids, as first observed in [10].
For reviews of the shear viscosity bound we refer the reader to [13-15].
®Dilatonic couplings to higher derivative terms in the context of 7 have also been studied in [19].
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Figure 1. Schematic plots of the shear viscosity to entropy density ratio for a number of fluids in
nature. T, denotes the critical temperature at the endpoint of the liquid-gas transition for water
and helium, the superfluid transition temperature for ultracold Fermi gases and the deconfinement
temperature for QCD. For the water and helium data (dotted lines) we refer the reader to [34].
The dashed curves are the expected theoretical curves for QCD (red) and ultracold Fermi gases
(green), from [30, 32] and [35, 36] respectively. The solid red square denotes the upper bound
T~25 (ﬁ) for the QCD quark gluon plasma found in [37], while the open red squares denote the

S
upper limits found in the lattice analysis of [66]. The dashed horizontal line is the universal ratio

1 = L Similar plots can be found in [12, 38].

A precise determination of the temperature behavior of transport coefficients such as
is an important ingredient for understanding the dynamics of the strongly coupled medium
produced at LHC and RHIC, and may also help in finding the location of the critical point.
However, at the moment most hydrodynamical simulations of the QGP assume that 2 is a
constant, and therefore insensitive to temperature. The question of the possible relevance
of a temperature-dependent g on the collective flow of hadrons in heavy ion collisions has
been investigated in a number of studies [5, 39-41], which thus far have focused mostly on
qualitative effects. The results of [39] seem to indicate that at LHC energies elliptic flow
values are sensitive to the temperature behavior of ? in the QGP phase, but insensitive to
it in the hadronic phase (with the results reversed at RHIC energies).

Motivated by the potential sensitivity of elliptic flow measurements to thermal varia-
tions of 1 at the energies probed by LHC, here we would like to initiate a systematic study
of the flow of the shear viscosity as a function of temperature in the context of holography.



In this paper we will restrict our attention to theories with a vanishing chemical potential,
described simply by gravity coupled to a scalar field in the presence of higher derivative
corrections. Although we will not consider string theory embeddings of these backgrounds,
the higher derivative terms we examine are generically expected to show up as corrections
to the two-derivative Einstein-scalar action viewed as an effective field theory, and in par-
ticular to most effective actions derived from string theory. Moreover, our result for 2
in (2.18) is completely generic and applicable to any top-down model which contains a
truncation to an Einstein-scalar theory.

Thanks to the presence of a non-trivial scalar field profile, the higher derivative terms
in our theory will generically generate a temperature flow for the shear viscosity, as already
expected from [20, 21]. In particular, the temperature dependence of  will be dictated by
the shape of the scalar potential and of the couplings of the scalar to the higher derivative
interactions. Given an explicit expression for 7 in terms of the latter, it is then straight-
forward to discuss the existence of local minima for ? as a function of temperature. As
we will see, for potentials which confine quarks at zero temperature it is also possible to
determine criteria for the existence of global minima. In particular, the requirements that g
approaches its high-temperature value from below (dictated from asymptotic freedom) and
that the zero-temperature theory is confining, are enough to fix the signs (and ranges) of
the couplings of the higher derivative terms, and guarantees the existence of a global mini-
mum for g, at or above T,.. Thus, we have been able to give a holographic argument for the
existence of a minimum for g in this class of models, along with a geometric interpretation
for it, complementing existing field-theoretic* arguments [42]. Finally, although our analy-
sis will be more general, we will focus mostly on ‘phenomenological’ models engineered to
reproduce some of the qualitative and quantitative features of QCD.

The rest of the paper is organized as follows. Section II describes our setup and out-
lines how to obtain ? for higher derivative corrections to dilatonic black brane solutions.
Our main results are presented in section III, where we discuss the temperature depen-
dence of 7 in theories with a non-trivial scalar field profile, first by considering a toy model
consisting of an exponential scalar potential, then focusing on QCD-like phenomenological
models. We also comment on qualitative features of 2 in theories that are confining, and
identify generic criteria for the existence of a minimum for ? as a function of temperature
in such setups. We summarize our results in section IV, where we also comment on the
challenges involved with determining more precisely the structure of g, and in particular

how it flows with temperature.

2 Setup

In order to generate a non-trivial temperature dependence for g at zero chemical potential
we will consider backgrounds with a scalar field coupled to a higher derivative theory of

4The authors of [42] tie a lower bound on the shear viscosity to the validity of second-order hydrody-
namics.



gravity. The action we consider is of the form

= 6ncn /d5x\/jg [R —2(V®)? + V(@) + 2B G(®) Rupo R*P7 |, (2.1)
under the assumption that the coupling 8 of the higher derivative terms is perturbatively
small and G(®) is an arbitrary regular function of ®. For most of the paper we will focus
on the exponential case, G(®) = ¢'®, however most of the analysis is straightforwardly
generalized to arbitrary G(®). The dilaton potential V(®) is assumed to have either a
minimum at some value & = &y or a run-away behavior V(®) — const as & — —oo
(as in [43, 44]). Although in the above we have only considered the higher derivative
correction Ry, - RFP?, this is in fact the only term which contributes to g at this order
in the derivative expansion. The computation of ? in theories with higher derivatives has
been studied in great detail, and here we review briefly only the relevant aspects.’

2.1 Extracting the shear viscosity to entropy ratio

In the hydrodynamic approximation to near-equilibrium dynamics, the transport coeffi-
cients of a finite temperature plasma can be extracted in a number of ways. The most
straightforward method for computing the shear viscosity is based on the Kubo relation

n=- 4})11{%) ; Im ny,xy(w’ k=0), (2.2)
which reduces 1 to the low frequency and zero momentum limits of the stress tensor’s
retarded Green’s function. Using the holographic dictionary, the relevant two-point corre-
lation function of the shear stress tensor T, can be read off from the effective action of
a shear metric fluctuation h ,” ~ [ d*k ¢y (u) e 2 where we use u to denote the
radial direction in the bulk. Expandmg (2.1) to quadratic order in the modes ¢y, one finds
the by now standard® form of the effective action for the shear fluctuation,

Ser ~ [ ok du [A(u) 661 + Blu) 9ho s+ Clw) G0k +
D(w) i+ B(w) 16" + F(u) 61| + Som . (23)

where the coefficients A(u), B(u), ..., F(u) encode information about the background so-
lution, and Sy is the generalized Gibbons-Hawking boundary term.

After a number of subtle manipulations, the shear viscosity can be extracted from (2.3)
and reduces [17] to the compact expression

G K O D N

SFor reviews of higher derivative corrections to 1 and further details of the computation we refer inter-

1
a 87TG5

ested readers to [13-15] and references therein.
6See [45] for the original derivation, in the context of o’? corrections.



evaluated at the horizon radius uy, showing that it is given entirely in terms of horizon
data.” Finally, the entropy density s is easily found by dividing by the (infinite) black
brane volume Wald’s entropy formula,

oL

- S— 2.6
(5Ruypo CprrCoas ( )

S =27 / d3zv/—h
b

where h is the induced metric on the horizon cross section X, and €, the binormal to X.
From our discussion above it is evident that  can be expressed entirely in terms of
near-horizon data. Moreover, when working perturbatively in the coupling 5 of the higher
derivative terms, % can be determined purely from the background solution of the two-
derivative theory.® These two facts allow us to write 2 in terms of the parameters of a
generic near-horizon non-extremal black brane expansion. Parametrizing the black-brane

solution to the leading order two-derivative action by
ds® = —a®(u) dt? + c2(u) du® + b*(u) di?, @ = ¢(u), (2.7)

with the choice b?(u) = 1/u, we can write down its near-horizon expansion by assuming a
first order zero in g4 and a corresponding first order pole in gy,

a(u)? = ag(1 —u) +a1(1 —u)? +ax(l —u)® + ...,
b(u)? = bo(1+ (1 —u)+...),
cw)?=col—u)t+er+e(l—u)+...,

o) =op +e1(l—u) +ea(l—u)?+... . (2.8)
The shear viscosity to entropy density ratio is then of the simple form [20]

2
n_ 1 (1—M<G<soh>+2so1 & (on) >), (2.9)

s Ar Co

and is only sensitive to the parameters {co, pn, ¢1} of the near-horizon expansions (2.8).
This concludes the derivation of ? for the theory described by (2.1). In the remainder of
this section we will discuss the class of dilatonic black brane solutions we are interested in.

2.2 Shear viscosity of dilatonic brane solutions

As we mentioned above, the backreaction of the higher derivative terms on the background
solution does not affect  to linear order in perturbative parameter (3, which is the order

"The Kubo formula (2.2) can be shown [17, 46] to be equivalent to

n= lim Mo k=0 (v)

—_— 2.
u,w—0 W ¢w,k:0(u) ’ ( 5)

where ITj, is the radial-momentum conjugate to ¢5. In the low frequency limit (as long as the boundary
theory is spatially isotropic) the quantity inside the limit does not depend on the radial coordinate. As a
result, it can be evaluated at an arbitrary value of u, and in particular at the horizon [17, 46].

®Because of the universality of 2, O(B) corrections to the background geometry lead to order O(57)
corrections to .



that we are interested in here. Thus, we are going to focus on black brane solutions to
models described by the two-derivative action

S = 1671G5 /df’x\/fg [R — (VD) + V(cb)] , (2.10)

and neglect curvature corrections. Although analytic black brane solutions are not known

for generic choices of the potential, to extract g knowledge of the near-horizon behavior
is enough, given our prescription (2.9). For this calculation we find it more convenient to
introduce a new radial coordinate r and parametrize the black brane ansatz as

ds* = f~Y(r) dr* + e2A(r) (da?2 — f(r) dtQ) , D =d(r). (2.11)

From the expression (2.9) it is clear that we will need to calculate the near horizon values
of the metric functions c¢(u) and ¢(u) in (2.7), and the relationship between T and ¢y,
which will make the temperature dependence of (2.9) explicit. We will instead calculate
the near horizon values of the functions ® and f above and perform a change of variables
at the end to express (2.9) in terms of physical quantities.

For this study, it turns out to be particularly convenient to adopt the phase variables
method developed in [47], which we briefly review here and in appendix A. This is a quick
and efficient way to obtain the thermodynamic properties of the diatonic branes. In place
of solving the full 5th order set of Einstein’s equations, one only needs to solve two first
order differential equations for the so-called “phase variables” that are defined from the

1 /
X@)=;5. Y@= 4ffA, .

The constant ¢ depends on the normalization of the scalar kinetic term in (2.1) and di-

metric functions as .
¢

(2.12)

mensionality. In our case it is fixed to be { = \/53/7 Clearly, these functions are invariant
under reparametrizations of the radial coordinate. Physically, one can interpret the bound-
ary values of these variables as the thermodynamic energy and the enthalpy of the system.
Furthermore, their horizon expansion is completely determined in terms of the dilation
potential V(®;) and V’/(®;) by the requirement of regularity. The behavior of the metric
functions near the horizon is also determined in terms of these two quantities. The details
of the calculation are explained in appendix A and here we present only the final results.

We parametrize the near-horizon expansion of the metric and scalar field of the black
brane ansatz (2.11) at r = 7, as follows,

A(T’) = A+ Al(T' - T’h) + - (213)
f(ry = filr—rp) 4+ -+ (2.14)
(I)<7") = (IJh—i-(I)l(T—Th)—I—--- . (215)

We can now make use of the phase variables method to obtain explicit expressions® for
f1, A1 and @1 in terms of the physical parameters in the system,
1
CSs
Al = ———V (),
1 7T (®n)

In particular, we use egs. (A.2), (A.3), (A.7), (A.14) and (A.16) in appendix A.




1
3C'S5
Y=g

fi = —M,(4m)5 — (2.16)

peA s

with C given by (A.15). As can be seen from (2.9), the only near-horizon parameters that
are needed for extracting g are cg, the leading order coefficient in the expansion of c(u),
and ¢y, and @, the first two terms in the scalar field expansion. By performing a change
of radial coordinate we can relate the two near horizon expansions, and write {¢p, ¢1,co}
in terms of {4y, f1, P, P1} as

1 1
¥1 24, 1, €0 2f1 A,

on = P, (2.17)

We now have all the ingredients needed to apply the near-horizon g prescription (2.9)

to the generic black brane expansion (2.16)—(2.17) we just found. As expected, we find that

the deviation from the universal result ? = ﬁ is controlled by the shape of the potential,

the horizon value of the scalar field as well as the coupling 3 of the higher derivative term,

n 1 25 3 /
—=—114+= —-G(D ® -G'(® ) 2.1
. 4W[+35ﬂ< G(@r)V(2n) + ;G (2p)V(20) ) | (2.18)
and for the specific choice of G(®) = €¥®, which we will focus on for the most of this paper,
1 1 25 3 il
S B —V(® - P T 2.1
5 ir I: + 36 15} ( V(®p) + 4’)/V< n) | e (2.19)

We emphasize that this expression is completely general, and applies to any asymptotically
AdS solution to (2.1). Moreover, we can already anticipate that ? will generically be tem-
perature dependent, thanks to the presence of a non-trivial scalar field profile, as already
seen in [20, 21]. To better understand the meaning of (2.19), we recall that the flow of % as
a function of temperature is mirrored, in the bulk, by the change of the near-horizon geom-
etry of the solution, as the horizon radius varies. For the class of holographic constructions
we are considering here, it is the scalar field profile which is responsible for introducing
an additional scale A in the theory (in addition to temperature), and thus breaking the
conformal symmetry away from the UV. As a result, we should think of &, the horizon
value of the dilaton, as tracking the temperature of the system.'® Thus, (2.19) can be
expressed entirely in terms of temperature by finding the precise relationship between @,
and T. As usual, the latter can be determined from the metric by demanding regularity
at the horizon. We review this is appendix A.

Finally, we would like to point out that in the special case of a non-dynamical scalar
field and a constant potential, we recover the standard result for an AdS black brane in
pure gravity with curvature corrections [48, 49], which is well-known to give rise to a con-
stant correction to the universal g = ﬁ result. More interestingly, there are special choices
of non-trivial V' (®) for which the temperature dependence disappears, as we will see more
explicitly below.

OMore precisely, it will track the dependence on T'/A, where A is the new scale in the system.



3 Results

In this section we examine the temperature dependence of g in various holographic se-
tups. We start by looking at a toy model consisting of a simple exponential potential,
and continue with more ‘phenomenological’ constructions designed to mimic QCD and in
particular the physics of the strongly coupled quark gluon plasma. We will conclude by
remarking on generic, qualitative features of Z, including a discussion of the existence of
minima as a function of temperature.

3.1 A warm-up example: Chamblin-Reall black brane

As a warm-up example, we will work out the Chamblin-Reall (CR) black-hole solution [50]
by making use of the phase variables formalism. The CR brane is a solution to (2.10) with
the single-exponential potential

V(@) = e, (3.1)

where Vj is a positive dimensionless constant and ¢ defines a length-scale in the background.
We choose o > 0. With this convention,'' in the zero temperature geometry the scalar
approaches ® — —oo on the boundary and ® — +o0 in the deep interior. In the black-brane
geometry, which is what we are ultimately interested in, ® runs from —oo on the boundary
to a constant value ®;, at the horizon. Thus, anywhere outside the horizon ® < &y,

Although the potential (3.1) does not admit an AdS minimum as the scalar field
approaches the boundary, the CR brane — for a special value of a — can be obtained
from a dimensional reduction of pure gravity plus a (negative) cosmological constant in six
dimensions. In fact our action (2.1), with the potential choice (3.1), can be obtained via a
U(1) reduction from the following six-dimensional mother theory

L = R+ 2\g + BRuype R (3.2)

for the special case!? of v = —a = —m (see appendix B for details of the reduction).

This special parameter choice — for which the CR solution can be uplifted to a pure AdS

black brane in six dimensions — will play an interesting role in the behavior of I, as we

will see later in this section. For now, however, we will keep {a,~} completely arbitrary.
The CR solution corresponds to the fixed-point of the X-equation (A.5) with

(07

X(®)=2p=—— .
(@) =m0 = 5. (33)
where recall ( = 1/8/3. Substituting this into the Y-equation (A.6), the solution becomes
_ 1-af _¢ 2

From (A.8) and (A.9) one can then reconstruct the full background as a function of ®,

A@w~%+£5@—@» () =1 — r@ns=®), (3.5)

"n the two-derivative theory, the sign of o can be altered by the transformation ® — —&.
2More general dimensional reductions [51] may yield additional values of ~y, a.



where @, corresponds to a cutoff surface, as explained in the appendix. One can now
use (A.12) and (A.13) to obtain the entropy and temperature as a function of @y,

(g 3¢
T(®p) = Tp ™o U100 5(,) = 5y e ™, (3.6)
where we defined
3(Acf—<l)c)
Vo Ac—X (1+422)® e e
Ty = —— ¢ 4z 0/=¢ = = .
T A o S5=500) 4Gy (3.7)

The temperature dependence of the entropy can be read off from (3.6),

3

S(T) oc T . (3.8)

Combined with the first law of thermodynamics, this fixes the temperature scaling for the

free energy of the system

4—4a}

F o« —T'%0 (3.9)

In both equations (3.8) and (3.9) the proportionality constant is positive. Notice that
the free energy F' is always negative definite and never crosses zero — there is no phase
transition in the system. Moreover, the requirement that the specific heat of the system
Cy, = TdS/dT is positive definite (for thermal stability) constrains the value of z, resulting
in 22 < 1/4. Using (3.3) this can be translated into a condition on a, the exponent in the

dilaton potential (3.1),
8
0<ac< \/; (3.10)

Together with this condition, equations (3.8) and (3.9) essentially determine all of the
thermodynamic properties of the system. The fact that — to work out the thermodynam-
ics associated with this background — we only needed to solve two first order differential
equations, (A.5) and (A.6), and not the full system of Einstein’s equations, demonstrates
explicitly the advantage of using the phase variables method.

We are now ready to calculate the shear viscosity of the CR black-brane solution.
Although we are particularly interested in the case of y = —a = _\/2/737 for which the CR
solution comes from a U(1) reduction of a pure AdS black brane in six dimensions, here
we write down a ‘formal’'? expression for 1 for arbitrary values of a and v. Using (3.1)
and the corresponding expressions for the temperature and entropy (3.6), one finds

—6a(y+a)

n 1 2 3ya T 8—3a2
—=—1—-—=W([1—-——— — . 3.11
s  Ar 3/ 0( 4 ><T0 (3:.11)

Recall from (3.10) that o? < 8/3, and therefore the sign of the power of the temperature

in (3.11) depends on whether v < —a or not. In either case, ? is a monotonic function of

n
S
cally AdS, it may be possible to generalize it to backgrounds that contain asymptotically conformally flat ra-

13 Although our near-horizon 2 prescription was obtained specifically for geometries that are asymptoti-

dial slices, by appropriately taking into account holographic renormalization in such backgrounds as in [52].

,10,



the temperature, and whether it decreases or increases relative to ﬁ depends on the sign
of 5 as well as the range of v. Furthermore, if we require the zero temperature limit to
approach the universal ﬁ result, we must impose v < —a.

Interestingly, the temperature dependence of the shear viscosity to entropy ratio dis-
appears in the two special cases:

4
1. V x e®®. In this case not only the T-dependence disappears, but also ? resumes its
universal value ﬁ, despite the presence of higher derivative corrections.

2. V x e 7® For the special case of o = 2/3, g takes exactly the same value as in
the six-dimensional AdS Schwarzschild black hole. This fact can be understood by
reducing the AdSs Schwarzschild solution on S'. It inherits the scale symmetry of
the parent solution in six-dimensions, hence leading to absence of the T-dependence.
See appendix B for details of this calculation. Similar statements can be made for
reductions from (d+ 1+n)-dimensions on an n-torus as in [53], which for d = 4 would

: 8n
yield a = —y =, /3(n+3).

It is possible that the cancelation of the correction to ﬁ in the former case may also be

understood in terms of a dimensional reduction of a parent theory, but this time without
a cosmological constant.!* At the moment we don’t have a more complete understanding
of this case (see however [54]).

3.2 Improved holographic QCD
3.2.1 ihQCD background

Next, we turn to the phenomenological models discussed in [43, 44, 53] and focus in partic-
ular on the setup of [47, 55]. These are phenomenological constructions in the sense that
the potential V(@) is determined purely by field-theoretic requirements, and is designed
to capture some of the features of QCD while remaining reasonably tractable. In fact, in
these models the dilatonic scalar can be identified'® with the running 't Hooft coupling,
A= Ncg%M ~ e®, and the scalar potential V(®) is directly related to the S-function of the
system, giving a holographic definition of the latter in terms of the background geometry.
Thanks to this identification one can extract the UV and IR asymptotics of the potential
from the small A and large A expansions of 5(\).

In the UV (small \), the input for the behavior of V' (®) comes from perturbative QCD,
i.e. from the requirement of asymptotic freedom with a logarithmic running coupling. More
generally, one assumes that there is a dimension-four operator TrF? in the spectrum, dual
to the dilaton in the bulk. The fact that the operator Tr F'2 is marginal in the UV then
translates into the statement that the UV geometry is asymptotically AdS5, with logarith-
mic corrections. The details of the UV expansion for these types of backgrounds can be
found in [43].

On the other hand, in the IR (large \) the potential is fixed by demanding linear
quark confinement. On the bulk side this is implemented by adding a probe string in the

We thank Blaise Gouteraux for a very interesting discussion on this point.
15Up to a multiplicative factor which does not affect physical observables.
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geometry — dual to a Wilson-loop — and obtaining the quark-anti quark potential from the
asymptotics of the string embedding in the IR [44, 56, 57]. One finds that linear confinement
requires the dilaton potential to have an asymptotic expansion in the IR of the form

V(®) = @ oF ... (3.12)

where we show only the leading large ® behavior,'® with \/% <@ <+/16/3 and P > 0.
The parameter choice which fits the available zero and finite temperature data best turns
out to be @ = /8/3 and P = 1/2 (see [58]). This particular choice is also well motivated
by the fact that it exhibits desirable qualitative features such as a linear glueball spec-
trum, screening of the magnetic quarks [44], and more recently the scaling behavior of the
interaction measure in temperature [59].'7

More specifically, defining A = exp(m(b), an example of a potential with the correct
UV and IR asymptotics is of the form

1/2

V(X
V) 14 amad [1og(1 FVRAS + VA (3.13)

12

where the value at A = 0 sets the UV AdS scale /. The remaining parameters in the
potential (3.13) can be fixed by matching the scheme-independent S-function coefficients
of large N QCD, the lowest glue ball mass and the latent heat at T, [58]. Although we
will analyze explicitly the model with the potential given in (3.13), we emphasize that our
qualitative results will only depend on the fact that V' — const in the UV and that it is a
confining potential in the IR.

3.2.2 Thermodynamics

Before discussing the temperature dependence of the shear viscosity in this setup, we would
like to summarize the basic thermodynamic properties of the system. These models exhibit
a first order confinement-deconfinement transition at some critical temperature 1T' = T,.
Below T, the dominant phase is the confined phase that corresponds to a thermal graviton
gas background. On the other hand, above T, one has the deconfined phase corresponding
to a big black-hole background. We note that there also exists a third phase above a certain
temperature T, where Ty, < Te, which is sometimes referred to as a small black-hole.
While the horizon of the latter is deep in the interior, the big black hole has its horizon
closer to the boundary.

The presence of the two types of black-holes is apparent from figure 2(a), which shows
T as a function of the horizon location. It is also clear from the figure that there are no
black hole solutions for 7" < Tinin. Although the small black-hole is always sub-dominant
and has a negative specific heat, its presence will turn out to be important to understand
certain properties of 7 in the following discussion. Figure 2(b) shows the variation of the
free-energy density F' as a function of the horizon radius. Finally, by combining figure 2(a)

YThe difference between this definition and the original one given in [43] arises from different normal-
izations of the dilaton kinetic term.
17See [60] and references therein for a criticism of ihQCD models.
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Figure 2. Typical plots of the black-hole temperature (a) and free energy (b) as a function of the
horizon position r,, in a confining background. The temperature features a minimum at r,;,, which
separates the large black-hole from the small black-hole branches. The locus given by F(r.) = 0,
with 7. < rmin, corresponds to the phase transition point, T' = T...

and figure 2(b) one can parametrically solve for the free energy as a function of tempera-
ture. The result is sketched in figure 3, which also summarizes the phase structure of the
system as the temperature is varied.

3.2.3 Shear viscosity of ihQCD

Given the general formula (2.19) and the dilaton potential (3.13), it is immediate to obtain

g as a function of the scalar at the horizon. However, physically one is interested in having

2 as a function of temperature, rather than ®;,. Conversion from the latter to temperature
is done by using either (A.12) or (A.16), after solving Einstein’s equations numerically for
the background functions. Figure 4 shows the results of this calculation, for the choice of
potential (3.13) which gives the best fit to the available lattice data [58]. We note that the
behavior of T" as a function of the horizon location is indeed of the form of figure 2(a), with
the minimum separating the big black hole (on the left) from the small black hole branch

(on the right).
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Figure 3. Black hole free energy as a function of temperature. The lines “B” and “S” denote
the big and the small black-hole solutions, respectively. At T" = Ty, the free energy of the two
solutions is the same. The free energy of the thermal gas phase is set to F' = 0. The direction
along which the horizon location increases — which is represent by A, the horizon value of the
dilaton — is also shown in the figure.

Combining T'(Ay) with the analytic expression (2.19) and the potential (3.13), one can
now plot 1 as a function of T'/T, for a choice of the parameters § and . Unfortunately, we
were unable to constrain the possible range of {3,~} with the available data, but instead
chose representative values (recall however that we want § to be small enough so that
the curvature corrections in (2.1) remain perturbative). Depending on the choice of the
couplings {f,7}, £ will then display different qualitative behaviors.

Two interesting fiducial cases — which are representative of the behavior of the viscos-
ity in a large portion of the phase space — correspond to taking 8 > 0,0 < v < \/% and
8<0,v< —\/8/73. In the first case, shown in figure 5(a), Z displays a local minimum as a
function of T which, for the parameter choices made there, appears around 7" =~ 1.87,. In
the high temperature limit g approaches the universal ﬁ value from below. The behavior
in the second case, depicted in figure 5(b), is quite distinct. There Z increases monotoni-
cally with temperature above T, increasing indefinitely as T" — oo, just as in perturbative
QCD. There is no local minimum appearing in the range T > T, and therefore g acquires
its minimum value at T = T.. In both cases, we know from field theory studies of the
hadronic phase that 7 increases monotonically for T' < T, as one probes lower and lower
temperatures. Thus, in figure 5(b) we expect T' = T, to correspond to the global minimum
of the function (7).
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Figure 4. Temperature as a function of A\, = eV3/2®* in the ihQCD background. The labels A,
and )\, refer to the value of \; at the critical and minimum temperature, respectively.
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Figure 5. Plots of 7 for theories with the scalar potential (3.13) and parameters chosen to give
the best fit to lattice data [58]. In (a) we have taken 3 = 0.1 and v = +/3/2, while in (b) 8 = —0.01
and v = 6/5./3/2. Figure (a) shows that I has a small minimum near 7' ~ 1.87,.. We emphasize
that the size of the variation in I can be reduced without changing its qualitative behavior, by
taking 3 sufficiently small.

In these two examples, the qualitative behavior of the viscosity is different not only near
T., but also in the high-T regime. We should note, however, that our holographic results
can only be trusted up to a certain Ty, above which the perturbative higher derivative
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expansion breaks down.'® In particular, we won’t be able to trust an arbitrarily large devi-
ation from the universal ﬁ result. Other interesting qualitative behaviors are also possible,
in the remaining range of {3,~}. For example, a mixture of the two aforementioned cases
arises when 8 < 0 and —\/8/73 <7 < 0. In this case  exhibits a local minimum above Tt
just like in the first case above, but its high-T behavior is the same as that of the second
case. We will provide a more detailed derivation of the different qualitative features of 2
as a function of temperature in the next section, where we will also discuss the boundaries
of the various regions of phase space which lead to the distinct g behaviors.

3.3 Qualitative features of the shear viscosity for confining backgrounds

We would like to conclude this section by exploring some of the qualitative features of
the temperature dependence of I from a more general point of view. For concreteness we
will restrict our attention to dilaton potentials that exhibit confining IR asymptotics (as
® — 00) as in the ihQCD case of the previous section,

V-
Vo el (3.14)
and AdS asymptotics in the UV. Furthermore, we will consider the following two possibil-
ities for the behavior of the potential in the UV:

a. V—>%+vew‘b+---,as¢’—>—oo

b. V%%—%m%ﬂ—l—--- as ® — 0
The first case (under the assumption that w > 0 to ensure AdS boundary conditions) is
precisely that of ihQCD-type backgrounds, where the dilaton is massless and corresponds
to a marginal deformation by the dimension-four operator TrF2. The second case describes
a massive dilaton of mass m, and corresponds to a deformation of the UV conformal theory

by an operator of scale dimension'”

202
A:2<1+ 1+ml€>. (3.15)

Thus, relevant deformations correspond to m? < 0, and the Breitenlohner-Freedman (BF)
bound is given by m?¢? = —16.

In holographic constructions of the type we are considering, the flow of 7 as a function
of temperature results from the way in which the near-horizon geometry changes as the
horizon radius varies (it comes from sampling the phase space of the possible solutions to

18 A potentially useful way of characterizing this break-down is by requiring £>8¢”®* R < 1, and evaluating
this at the horizon. This yields the relation 362,36’7@1{ V(®n) < 1, from which one can compute Tax,
corresponding to the point at which the correction becomes O(1). However, making this relation more
precise is beyond the scope of this paper.

9Note that the normalization of the kinetic term for our scalar differs by a factor of four from that of
more standard AdS/CFT conventions, leading to a slightly different relation between the scalar mass and
the conformal dimension of the dual operator.
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the theory). In our setup, the horizon value ®;, of the scalar field tracks the tempera-
ture of the system. High temperatures then map to ®; — —oo in the a) type potentials,
and @, — 0 in the b) type potentials we have just discussed, whereas ‘low’ temperatures
correspond to the region just above 7' ~ T.. We emphasize that the geometry which is
relevant in this entire temperature range 7' 2 T, is that of the big black-hole discussed in
section 3.2.2. Thus, the high-T behavior of g will correspond to the large horizon limit
of the big black-hole geometry. Below T, the thermal gas phase dominates, and we won’t
attempt to compute g directly in that regime (we will discuss the subtleties involved with
such a calculation towards the end of this section). Instead, we will extract information
about the structure of  — and in particular any minima it has as a function of temperature
— by exploiting the existence of both the big and small black-hole branches. Thus, even
though the small black-hole is not of direct physical interest — it is not thermodynamically
favored — it is still (indirectly) useful for probing 7.

We start by working out the viscosity to entropy ratio in the regime which corresponds
to the small black-hole branch. In particular, we work in the ®; > 1 limit which describes
an extremely small horizon radius (the far right of figure 4). In this regime, we can extract
1 by plugging the IR potential (3.14) into our general formula (2.19), which gives

g = i - 5‘6%" <374Q — 1) el 4 (3.16)
where we are omitting terms that are subleading in the large ® limit. Given that the small
black-hole is not thermodynamically favored, we emphasize that the only crucial piece of
information we need to extract from this expression is whether  increases or decreases
as @, grows larger and the small black-hole shrinks. We can see from (3.16) that as @),
grows, the correction to g tends to become?® large and positive for {8 > 0,v > 4/3Q} and
{B < 0,7 <4/3Q}, while it tends into the large and negative direction in the opposite case
(assuming in all these cases that v+ @ > 0). On the other hand, when v+ @ < 0 the sign
of the exponential term changes, and the correction term vanishes in the extreme small
black hole limit, from above (below) when the product (% — 1) is positive (negative).

We note that in all of this analysis 3 is assumed to be perturbatively small,! |3] < 1.
Of course when the higher derivative correction (3.16) becomes ‘too large,” the result can no
longer be trusted — for consistency one would have to include not only the four-derivative
term in the action (2.1), but all other higher derivative corrections as well. However, our
expression for 1 above will still be useful for the following two reasons. First, in many phe-
nomenological potentials of the type we are interested in, the leading IR behavior (3.14)
doesn’t necessarily set in at a very high value of ®;. Thus, in these cases there will be a re-
gion of validity for (3.16), which can be made larger and larger by choosing 3 (or ) smaller.
Secondly, as it will become clear below, what we are really after is not the precise value

of (3.16), but rather whether ? tends upwards or downwards on the small black-hole branch.

20 Analysis of the sub-leading terms shows that it becomes large and positive even when v = 4/3Q.
21To ensure the absence of additional degrees of freedom associated with the higher derivative corrections
in (2.1).
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Next, we move on to discussing the high-temperature behavior of ? realized on the
big black-hole branch,?? which maps to ®;, — —oo and ®; — 0 for type a) and type b)
potentials, respectively. We analyze the two types of UV asymptotics for the potential
separately. In case a) one finds, for negative and large ®;, (the black hole horizon is close
to the runaway AdS region)
g = ﬁ [1-88e™n 4...] . (3.17)
Thus, in the high-T' regime % attains its universal ﬁ value, 