Six-dimensional (1,0) supersymmetric gauged Einstein-Maxwell supergravity is
extended by the inclusion of a supersymmetric Riemann tensor squared invariant.
Both the original model as well as the Riemann tensor squared invariant are
formulated off-shell and consequently the total action is off-shell invariant
without modification of the supersymmetry transformation rules. In this
formulation, superconformal techniques, in which the dilaton Weyl multiplet
plays a crucial role, are used. It is found that the gauging of the U(1)
R-symmetry in the presence of the higher-order derivative terms does not modify
the positive exponential in the dilaton potential. Moreover, the supersymmetric
Minkowski(4) x S^2 compactification of the original model, without the
higher-order derivatives, is remarkably left intact. It is shown that the model
also admits non-supersymmetric vacuum solutions that are direct product spaces
involving de Sitter spacetimes and negative curvature internal spaces.Comment: 32 pages; typos corrected, footnote in conclusions section adde