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1 Introduction

In gauge/gravity duality, the near horizon geometry in the gravity side is very crucial to

understanding the low energy behavior of the dual field theory, especially in the framework

of the semi-holographic description [1]. The simplest geometry which corresponds to a field

theory at finite density is the planar Reissner-Nordström (RN) AdSd+1 black hole. The

near horizon geometry of the extremal RN AdS black hole is AdS2 ×Rd−1 and it has been

studied in detail in e.g. [2]. It has a finite entropy at zero temperature which may indicate

an instability of the system [3]. Generally when scalar fields or Fermions are present, due to

the backreaction of these matter fields the system will have a more stable ground state and

the near horizon geometry turns out to be Lifshitz [4] at zero temperature in many cases [5–

9]. However, it has been shown in [10, 11] that the Lifshitz geometry probably is not a good

near horizon geometry because of a mild “singularity”. This motivates people to consider

other possible and more interesting near horizon geometries of extremal black holes.

Both AdS2 × Rd−1 and Lifshitz geometries have the usual translational symmetries

along the spatial directions where the black hole extends, which might not be quite nec-

essary in order to connect these geometries to the real world condensed matter systems.

It was shown recently in [12] that one can slightly relax the symmetry requirements on

these spatial directions, i.e. from the usual translational symmetries to the requirement

of homogeneity. In other words, we are interested in the kind of near horizon geometries

of extremal black holes which are homogeneous but can be possibly anisotropic in the

spatial directions.

A homogeneous space is a space in which the physics looks the same everywhere.

This indicates that any two points in the space can be connected by the isometry group

transformations. We will focus on the 4 + 1 dimensional gravity system. In this case

because the spatial space is three dimensional, we need three linearly independent Killing

vectors ξi (i = 1, 2, 3) as well as a metric which is invariant under the isometry group that is

generated by these Killing vectors in order to realize a spatially homogeneous space. The
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Killing vectors satisfy the commutation relation [ξi, ξj ] = ckijξk where ckij are structure

constants. In three dimensions, there are only nine types of such symmetry groups which

are described by the Bianchi classification [13]. For each case, we can define three one-

forms ωi that are invariant under the isometry transformations. These one forms satisfy

dωi = 1
2c

i
jkω

j ∧ ωk. Thus ds2Σ = gij(t, r)ω
iωj gives a homogeneous space.

In [12] they considered the metrics of the following form

ds2 = L2
(

− e2βtrdt2 + dr2 + ηije
(βi+βj)rωiωj

)

. (1.1)

where βt, ηij , βi are constants and we can see that the spatial space {xi} (i = 1, 2, 3) that the

black hole extends in is homogeneous with three isometries. Apart from the requirement

of homogeneity this system also has a generalized Lifshitz scaling symmetry r → r + ǫ,

t → te−βtǫ while ωi → ωie−βiǫ which makes it more interesting to our purpose.

AdS and Lifshitz cases have the usual translational invariance (both homogeneous and

isotropic) along xi, i.e. ω
i = dxi and cijk = 0 and this belongs to the Type I class. When

the structure constants cijk are nontrivial there are generalized translational symmetries

(homogeneity) along the three spatial directions and we call it spatially homogeneous Lif-

shitz geometry. In [12] they mainly realized these geometries (1.1) in the Einstein gravity

coupled to massive gauge fields [4, 14]. It is natural to ask if we can find such geometries

as well as finite temperature solutions in other kinds of gravity theories. This is the main

motivation of our work.

Recently there have been many nice results in the developments on higher derivative

gravities. It was shown [15] that the Lifshitz vacuum geometry is a solution of the quadratic

curvature gravities. An interesting development is that the black hole solutions which are

asymptotic to Lifshitz geometry were found in [16] for 2 + 1 dimensional new massive

gravity (NMG) [17]. Motivated by this work, in [18] the Lifshitz black hole solution was

also found for 3 + 1 dimensional R2 gravity and the generalization to higher dimensional

cases can be found in [19]. Stationary Lifshitz black holes of R2 gravity theory were found

in [20]. In five dimensions, higher derivative gravity theories are also very interesting as

the higher derivative terms can arise in the effective actions derived from string theory.

This motivates us to consider if we can find these five dimensional spatially homogeneous

Lifshitz black hole solutions similar to [12] in the higher derivative gravity theories.

In the next section, we give the analytic spatially homogeneous Lifshitz black hole

solutions in the pure R2 gravity for all the nine Bianchi classes. The thermodynamic

properties of these black holes are also discussed. Similar to [18], these black holes have

zero entropy while non-zero temperature which is quite similar to BTZ black holes in NMG

at the critical points [21] as well as Schwartzschild black holes in the higher dimensional

critical gravity [22]. It is natural to expect that our results provide an interesting toy

model for quantum gravity in five dimensions. Then in section 3, we consider the spatially

homogeneous Lifshitz black hole solutions in the most general quadratic curvature gravities.

New solutions are found for Bianchi Type I and IX models. The entropy of the Type IX

black hole solutions is calculated and it is found to be independent of the temperature

which is a feature of AdS2 black hole [23]. In the last section, we give our conclusion

and discussions.
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2 Spatially homogeneous Lifshitz black holes in R
2 gravity

Motivated by [16], it was first observed in [18] that the constant curvature solutions are

always solutions of four dimensional R2 gravity at special coupling. Later it was generalized

to higher dimensional case [19]. Since the solution founds in [12] are all constant curvature

solutions, it is interesting to study them in this kind of R2 gravity.

We start from the action of the general f(R) gravity [18, 19]

S =
1

2κ2

∫

dd+1x
√−gf(R). (2.1)

The equation of motion is

f ′Rµν −
1

2
gµνf − (∇µ∇ν − gµν∇2)f ′ = 0 (2.2)

where f ′ = ∂Rf.

For f(R) = − 1
8λ(R − 4λ)2h(R) with h(R) regular at R = 4λ, it is easy to show that

the EOM (2.2) is automatically satisfied for any constant curvature background gµν with

R = 4λ. Based on this observation we can easily find solutions to a large variety of f(R)

gravities depending on different forms of h(R). Here we focus on the simplest case, i.e.

choosing h(R) = 1. The corresponding action is

S =
1

2κ2

∫

dd+1x
√−g

[

R− 2λ+ αR2
]

(2.3)

where αλ = −1/8 and the equation of motion is

Rµν −
1

2
gµνR+ λgµν + 2α(gµν∇2 −∇µ∇ν)R+ 2αR

(

Rµν −
1

4
gµνR

)

= 0. (2.4)

Though we have chosen αλ = −1/8, one can take α and λ as independent constants to

look for spatially homogeneous Lifshitz black hole solutions, and it turns out that we can

have such kind of solutions only at the special coupling with αλ = −1/8.

2.1 Solutions

Here we will focus on the d = 4 case. It is known that there are nine classes of solutions

by the Bianchi classification. In these nine classes of solutions, the structure constants

associated with ωi are different and we have different expressions for ωi in a particular

coordinate basis. For a detailed discussion on these nine Bianchi classes please refer to [12,

13]. The solutions we are going to look for are asymptotic to the form (1.1) with ηij being

diagonal, i.e. ηij = (λ1, λ2, λ3). Furthermore, we assume that there is a scaling symmetry

associated with the xi coordinates. For simplicity, we will assume λi to be unity in most

cases. We closely follow the convention of [12, 13] and in the following we will give the

solutions of the nine cases respectively in R2 gravity.

– 3 –
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Type I. This is the simplest case with cijk = 0 and we can set ωi = dxi (i = 1, 2, 3). One

can choose the following ansatz

ds2 = L2

(

− e2βtrg(r)dt2 +
dr2

g(r)
+ e2β1rdx21 + e2β2rdx22 + e2β3rdx23

)

,

g(r) = 1−M−e
−α

−
r +M+e

−α+r. (2.5)

This is the asymptotic Lifshitz solution [4, 15, 18, 19]. Note that we are more interested

in the non AdS5 case. From the EOM (2.4), we have

α± =
3βt + 2(β1 + β2 + β3)±

√

β2
t + 4βt(β1 + β2 + β3)− 4(β2

1 + β2
2 + β2

3)

2
, (2.6)

λ = − 1

8α
= − 1

2L2

(

β2
t + βt(β1 + β2 + β3) + (β2

1 + β2
2 + β2

3 + β1β2 + β2β3 + β3β1)
)

,

and M± are arbitrary constants. We have a large variety of solutions where α±, βt, βi obey

the relations in (2.6). We can see that this is a black hole solution with two horizons

and the boundary is at r → ∞. It can be checked that at r → −∞ there is a curvature

singularity. The thermodynamic properties will be discussed in the next section.

When r → ∞, it is asymptotic to Lifshitz solution with Lifshitz scaling symmetry

r → r + ǫ, t → te−βtǫ, xi → xie
−βiǫ, (i = 1, 2, 3). (2.7)

Type II. In this case the only non-trivial elements of the structure constants are c123 =

−c132 = 1. The invariant one forms are

ω1 = dx2 − x1dx3, ω2 = dx3, ω3 = dx1, (2.8)

The ansatz for the metric is

ds2 = L2

(

− e2βtrg(r)dt2 +
dr2

g(r)
+ e2(β2+β3)r(ω1)2 + e2β2r(ω2)2 + e2β3r(ω3)2

)

,

g(r) = 1−M−e
−α

−
r +M+e

−α+r. (2.9)

Solving the Einstein equation (2.4) gives

α± =
3βt + 4(β2 + β3)±

√

β2
t + 8βtβ2 − 8β2

2 + 8βtβ3 − 8β2β3 − 8β2
3

2
,

λ = − 1

8α
= − 1

8L2

[

1 + 4(β2
t + 3β2

2 + 5β2β3 + 3β2
3 + 2β1(β2 + β3))

]

. (2.10)

When r → ∞, it is asymptotic to the solution with the scaling symmetry

r → r + ǫ, t → te−βtǫ, x1 → x1e
−β3ǫ, x2 → x2e

−(β2+β3)ǫ, x3 → x3e
−β2ǫ. (2.11)
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Type VI, III and V. In these three cases, the non-trivial elements of the structure

constants are c113 = −c131 = 1 and c223 = −c232 = h. The invariant one forms are

ω1 = e−x1dx2, ω2 = e−hx1dx3, ω3 = dx1. (2.12)

h = 0 is the Type III class and h = 1 is the Type V class. In the Type VI class, h can

be any constant other than 0, 1. As pointed out in [12], one can take Type III and V as a

limit of Type VI. We consider the metric ansatz for these three cases

ds2 = L2

(

− e2βtrg(r)dt2 +
dr2

g(r)
+ e2β1r(ω1)2 + e2β2r(ω2)2 + (ω3)2

)

,

g(r) = 1−M−e
−α

−
r +M+e

−α+r. (2.13)

For Type VI, we have

α± =
3βt + 2(β1 + β2)±

√

β2
t + 4βt(β1 + β2)− 4β2

1 − 4β2
2

2
,

λ = − 1

8α
= − 1

2L2

[

β2
t + βt(β1 + β2) + β2

1 + β2
2 + β1β2 + 1 + h+ h2

]

. (2.14)

When r → ∞, it is asymptotic to the solution with scaling symmetry

r → r + ǫ, t → te−βtǫ, x1 → x1, x2 → x2e
−β1ǫ, x3 → x3e

−β2ǫ. (2.15)

The solution for Type V is the limit h → 1 of (2.14), and Type III is the limit h → 0.

Type IV. In this case, c113 = −c131 = 1, c123 = −c132 = 1, c223 = −c232 = 1 and the rest

are zero. The invariant one forms are

ω1 = e−x1dx2 − x1e
−x1dx3, ω2 = e−x1dx3, ω3 = dx1. (2.16)

The metric ansatz is

ds2 = L2

(

− e2βtrg(r)dt2 +
dr2

g(r)
+ e2β1r

(

(ω1)2 + (ω2)2
)

+ (ω3)2
)

,

g(r) = 1−M−e
−α

−
r +M+e

−α+r. (2.17)

We have the solution

α± =
3βt + 4β1 ±

√

β2
t + 8βtβ1 − 8β2

1

2
,

λ = − 1

8α
= − 1

8L2

[

13 + 4β2
t + 8βtβ1 + 12β2

1

]

. (2.18)

When r → ∞, it is asymptotic to the solution with scaling symmetry

r → r + ǫ, t → te−βtǫ, x1 → x1, x2 → x2e
−β1ǫ, x3 → x3e

−β1ǫ. (2.19)
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Type VII. In this case, c123 = −c132 = −1, c213 = −c231 = 1, c223 = −c232 = h with

h2 < 4 and the rest are zero. The special h = 0 case was considered in [12] and here we

focus on the general case. Following [13], we introduce k = h/2, a =
√
1− k2 and

A = ekx1 cos ax1, B = −1

a
ekx1 sin ax1, C = e−kx1 cos ax1, D = −1

a
e−kx1 sin ax1. (2.20)

The invariant one forms are

ω1 = (C − kD)dx2 −Ddx3, ω2 = Ddx2 + (C + kD)dx3, ω3 = dx1. (2.21)

The ansatz for the metric is

ds2 = L2

(

− e2βtrg(r)dt2 +
dr2

g(r)
+ e2β1r

(

(ω1)2 + λ2
1(ω

2)2
)

+ (ω3)2
)

,

g(r) = 1−M−e
−α

−
r +M+e

−α+r. (2.22)

The solution is given as

α± =
3βt + 4β1 ±

√

β2
t + 8βtβ1 − 8β2

1

2
,

λ = − 1

8α
= − 1

8λ2
1L

2

[

1 + 2(−1 + 2h2 + 2β2
t + 4βtβ1 + 6β2

1)λ
2
1 + λ4

1

]

. (2.23)

When r → ∞, it is asymptotic to the solution with scaling symmetry

r → r + ǫ, t → te−βtǫ, x1 → x1, x2 → x2e
−β1ǫ, x3 → x3e

−β1ǫ. (2.24)

Type IX and Type VIII. In the Type IX class, c123 = −c132 = 1, c231 = −c213 = 1,

c312 = −c321 = 1 and the others are zero. The invariant one forms are:

ω1 = − sinx3dx1 + sinx1 cosx3dx2,

ω2 = cosx3dx1 + sinx1 sinx3dx2,

ω3 = cosx1dx2 + dx3. (2.25)

We choose the metric to be

ds2 = L2

(

− e2βtrg(r)dt2 +
dr2

g(r)
+ (ω1)2 + (ω2)2 + λ1(ω

3)2
)

,

g(r) = 1−M−e
−α

−
r +M+e

−α+r. (2.26)

The solution is

α+ = 2βt, α− = βt

λ = − 1

8α
= − 1

8L2

[

4β2
t − 4 + λ1

]

. (2.27)

When r → ∞, it is asymptotic to the solution with scaling symmetry

r → r + ǫ, t → te−βtǫ, xi → xi, (i = 1, 2, 3). (2.28)

– 6 –
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This geometry is asymptotically AdS2 × squashed S3 [12] and it can be viewed as AdS2
black hole × squashed S3. It is well known [2, 23] that the AdS2 black hole is locally

equivalent to the vacuum AdS2. However, we can still define horizons and it is interesting

to study it. Similar things also happen to the next case.

Bianchi Type VIII case is quite similar to Type IX case. The Type VIII case is

c123 = −c132 = −1, c231 = −c213 = 1 and c312 = −c321 = 1 and the others are zero. The

invariant one form are

ω1 = dx1 + (1 + x21)dx2 + (x1 − x2 − x21x2)dx3,

ω2 = 2x1dx2 + (1− 2x1x2)dx3,

ω3 = dx1 + (−1 + x21)dx2 + (x1 + x2 − x21x2)dx3. (2.29)

Similar to Type IX case, the ansatz of the metric is

ds2 = L2

(

− e2βtrg(r)dt2 +
dr2

g(r)
+ (ω1)2 + (ω2)2 + λ1(ω

3)2
)

,

g(r) = 1−M−e
−α

−
r +M+e

−α+r. (2.30)

The solution is

α+ = 2βt, α− = βt

λ = − 1

8α
= − 1

8λ1L2

[

4β2
t λ1 + 4 + λ2

1

]

. (2.31)

After exhibiting these solutions for the nine cases, we can make several interesting

comments. First, though α/L2 is still small compared to 1/λL2, these solutions only exist

at a specific value of α and we can not take the solutions as a perturbation around pure

Einstein solutions according to α. Second, here we have the constraint that α± are real

which would give more restrictions on the parameters appearing in the solution. Third,

in some of them such as Type II, for the special couplings with α+ = α−, the two sectors

in g(r) are the same and a new logarithmic solution will appear, just like what happens

in three dimensional massive gravity case [24, 25]. Actually, one can choose M± with a

special relation and take the α+ → α− to construct these logarithmic solutions like [19].

2.2 Thermodynamic properties

One can choose suitable M± and parameters like βt to make the solution we obtained a

black hole solution. Following the discussions in [18] the thermodynamic properties of these

black hole solutions can be discussed in parallel.

The horizon of these black holes is located at rH where g(rH) = 0. In general, there

might be two horizons and we will consider the non-degenerate case1 and choose rH as the

1The degenerate case corresponds to vacuum solution or the extremal black holes, e.g. in the logarithmic

black hole case [19]. Surely it is interesting to study them to see whether they are more stable than the

vacuum solutions.
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location of the outer horizon. We have g(r) ∼ g′(rH)(r − rH) when r → rH . It is easy to

show that the Hawking temperature of the black hole is

T =
g′(rH)

4π
eβtrH . (2.32)

From Wald’s formula for the black hole entropy [26],

S = −2π

∫

H
dΣH

∂L
∂Rµνρσ

ǫµνǫρσ = − π

2κ2

∫

H
dΣH(1 + 2αR)(gµρgνσ − gµσgνρ)ǫµνǫρσ, (2.33)

where ǫµν is the binormal to the horizon and is normalized as ǫµνǫµν = −2. We find

that all the above constant curvature black hole solutions have a vanishing entropy in the

action (2.3).

Furthermore, the on shell action (2.3) is always vanishing for these constant curvature

solutions with R = 4λ = −1/2α, even when a boundary term [27] is added

Sbt = − 1

8π

∫

∂M
d4x

√
−h(1 + 2αR)K, (2.34)

where K is the extrinsic curvature for the boundary hypersurface ∂M with induced metric

h. This implies that both the free energy and mass of the black holes vanish as well

F = M = 0, (2.35)

although the black hole solutions have a nonvanishing horizon radius rH .

Such kinds of zero entropy and zero mass black holes have been found before in critical

NMG for BTZ black holes where the corresponding field theory sensitively depends on the

boundary condition [21, 28]. (See also [18, 22, 29, 30].) It is natural to expect that the dual

field theory (if exists) to each fixed asymptotical geometry provides a simple consistent toy

model for quantum gravity in five dimensions.

3 General quadratic curvature gravity

In this section, we will consider the spatially homogeneous Lifshitz black holes in the most

general quadratic curvature gravity. The action is

S =
1

2κ2

∫

d5x
√−g

[

R− 2λ+ αR2 + βRµνR
µν + γ

(

RµνρσR
µνρσ − 4RµνR

µν +R2
)

]

(3.1)

where α, β, γ are coupling constants and λ is the cosmological constant. Note that the

term associated to γ is the Gauss-Bonnet term. The corresponding equation of motion for

the action (3.1) is

Rµν −
1

2
gµνR+ λgµν + (2α+ β)(gµν∇2 −∇µ∇ν)R+ β

(

∇2Rµν −
1

2
gµν∇2R

)

+2αR

(

Rµν −
1

4
gµνR

)

+ 2β

(

Rµρνσ − 1

4
gµνRρσ

)

Rρσ + 2γ

(

RRµν − 2RµρνσR
ρσ (3.2)

+RµρστR
ρστ
ν − 2RµρR

ρ
ν − 1

4
gµν(RρστℓR

ρστℓ − 4RρσR
ρσ +R2)

)

= 0

– 8 –
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The action considered in the previous section is a special case for this action with α =

−1/8λ, β = 0, γ = 0. One can rescale gµν → L2gµν , correspondingly, λ → L−2λ, (α, β, γ) →
L2(α, β, γ) to set L = 1. It is easy to show that the solutions for the cases of Type II,

VI, III, V, IV, VII and VIII are the same as in the previous section, i.e. in these cases we

can only find solutions at β = γ = 0 and αλ = −1/8. For other cases, we can have new

solutions where either β 6= 0 or γ 6= 0. We list our results in the following:

Type I. In this case we focus on the vacuum solutions and the metric ansatz is the

following

ds2 = −e2βtrdt2 + dr2 + e2β1rdx21 + e2β2rdx22 + e2β3rdx23. (3.3)

For β1 = β2 = β3, we have the solution

λ = −1

2

(

β2
t + 3βtβ1 + 6β2

1 − 4γβtβ
2
1(βt + 3β1)

)

, α = −2β(3β2
1 + β2

t ) + 4γβ2
1 − 1

4(β2
t + 3βtβ1 + 6β2

1)
. (3.4)

Note that here we are more interested in the non AdS5 case. For α = β = 0, the theories

reduce to Einstein Gauss-Bonnet gravity. We can see that there are Lifshitz solutions

for Einstein Gauss-Bonnet gravity besides the asymptotically AdS solutions found in [31].

Here we focus on the vacuum solutions. The corresponding black hole solutions have

been studied in [19] and their thermodynamics can be found in [32]. Also note that with

and without the accompanying Proca matter field in this case the asymptoticallly Listshitz

black hole solutions were obtained and their corresponding thermodynamic properties were

studied in [33–35].

For general βi (i = 1, 2, 3) we have

λ = −1

2

(

β2
t + βt(β1 + β2 + β3) + β2

1 + β2
2 + β2

3 + β1β2 + β2β3 + β3β1
)

,

α =
1− 2β(β2

t + βt(β1 + β2 + β3) + β2
1 + β2

2 + β2
3 + β1β2 + β2β3 + β3β1)

4(β2
t + β2

1 + β2
2 + β2

3)
,

γ = 0. (3.5)

From the above formula, we can see that if we take β = γ = 0, we will come back to

the results in the last section.

Type IX. In this case the ansatz for the black hole metric is

ds2 = −e2βtrg(r)dt2 +
dr2

g(r)
+ (ω1)2 + (ω2)2 + λ1(ω

3)2,

g(r) = 1−M−e
−α

−
r +M+e

−α+r (3.6)

where ωi is defined in (2.25). The EOM (3.2) gives:

λ =
−8β6

t + 2(5 + 4γ)β4
t λ1 + β2

t [8 + λ1(3λ1 − 2γ(λ1 − 4)− 10)] + λ1(λ1 − 4)

8β2
t (2β

2
t − 3λ1 + 2)− 8λ1

,

α =
−8γβ6

t + 2β4
t + β2

t [2− 3λ1 + γ(λ1 − 2)(3λ1 − 4)]− λ1

[2β4
t + β2

t (2− 3λ1)− λ1](4β2
t + λ1 − 4)

,

β =
γβ2

t (4β
2
t + 4− λ1)

2β4
t + β2

t (2− 3λ1)− λ1
,

α+ = 2βt, α− = βt. (3.7)
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Similar to the previous case, we can choose βt = 4+ 1
γ
, λ1 =

1
2
√
γ
to make α = β = 0, i.e. the

solution also appears in Einstein Gauss-Bonnet gravity. In this case, one can also study the

thermodynamic properties. The temperature is the same as (2.32) in the previous section.

By Wald’s formula [26], we have

S = −2π

∫

H
dΣH

∂L
∂Rµνρσ

ǫµνǫρσ

= − π

2κ2

∫

H
dΣHǫµνǫρσ

(

(1 + 2(α+ γ)R)(gµρgνσ − gµσgνρ)

+ (β − 4γ)(gµρRνσ + gνσRµρ − gµσRνρ − gνρRµσ) + 4γRµνρσ

)

= −2πβλ1Ω3

κ2β2
t

, (3.8)

where Ω3 is the volume of the three dimensional space. It is interesting to see that we

have a constant entropy which does not depend on the temperature. As pointed out in

the previous section, this geometry is an AdS2 black hole × squashed S3. Essentially the

temperature independence of the entropy is a feature of AdS2 black hole [23] because the

temperature can be eliminated by a coordinate transformation. This might not be true in

the case of the quantum theory and it would be interesting to consider the entanglement

entropy etc to study the quantum gravity theory in this geometry background.

4 Conclusion and discussion

As shown in [12], we can relax the usual translational invariance to the requirement of

homogeneity for the spatial directions of the black holes. There are nine Bianchi classes

of spatially homogeneous Lifshitz vacuum solutions. In this paper, we studied the higher

derivative gravity theories to get these kinds of spatially homogeneous Lifshitz black hole

solutions. We constructed the analytic black hole solution which asymptotes to the spatially

homogeneous Lifshitz vacuum solutions in both R2 gravity and the most general quadratic

curvature gravity theories. We analyzed the thermodynamics of these spatially homogenous

Lifshitz black holes in R2 gravity and found that they have zero entropy at non-zero

temperatures which is quite similar to some previous studies [18, 21, 22, 29]. New solutions

are found for Bianchi Type I and IX models in the more general quadratic curvature

gravities. The Type IX solution is essentially AdS2 black hole × squashed S3 and its

entropy is found to be independent of the temperature as expected.

There are some remaining open questions. One immediate question is to study the

conserved charges of these spatially homogeneous Lifshitz black holes in higher-curvature

gravity following e.g. [36, 37]. As for applications to condensed matter systems, it is

necessary to study the scalar or spinor two point functions or entanglement entropy or

probe D-branes in these spacetimes. It would be interesting to construct the full solutions

flowing from these spatially homogeneous solutions at the horizon to AdS5 on the boundary

and study the corresponding fluid property [38] and this may also give more restrictions

to the parameters in the solutions.
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While here we considered the pure quadratic curvature gravity, one could try to find

the spatially homogeneous Lifshitz black holes in other kinds of gravity theories, such as

in the Einstein-Maxwell-dilaton gravities [39] or Lovelock gravities etc. For the Einstein

gravity coupled to massive gauge field with higher curvature corrections, the spatially

homogeneous and isotropic Lifshitz black holes and their theomodynamics were studied

in [33–35]. Similarly, one can also add the higher derivative gravity corrections (or Chern-

Simons corrections) to [12] to look for spatially homogeneous Lifshitz solutions and study

their thermodynamics. Finally, it would be interesting to study the instability as well as

the causal structures of these geometries.
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